139 research outputs found

    Recombination at a 246 bp interrupted palindrome in Escherichia coli

    Get PDF

    Framing and signalling effects of taxes on sugary drinks: a discrete choice experiment among households in Great Britain

    Get PDF
    Taxes on sugar-sweetened beverages (SSBs) are in place in many countries to combat obesity with emerging evidence that these are effective in reducing purchases of SSBs. In this study, we tested whether signalling and framing the price increase from an SSB tax explicitly as a health-related, earmarked measure reduces the demand for SSBs more than an equivalent price increase. We measured the demand for non-alcoholic beverages with a discrete choice experiment (DCE) administered online to a randomly selected group of n = 603 households with children in Great Britain (GB) who regularly purchase SSBs. We find a suggestive evidence that a price increase leads to a larger reduction in the probability of choosing SSBs when it is signalled as a tax and framed as a health-related and earmarked policy. Respondents who did not support a tax on SSBs, who were also more likely to choose SSBs in the first place, were on average more responsive to a price increase framed as an earmarked tax than those who supported the tax. The predictive validity of the DCE, to capture preferences for beverages, was confirmed using actual purchase data. The findings imply that a well-signalled and earmarked tax on SSBs could improve its effectiveness at reducing the demand

    Repair on the Go:E. coli Maintains a High Proliferation Rate while Repairing a Chronic DNA Double-Strand Break

    Get PDF
    DNA damage checkpoints exist to promote cell survival and the faithful inheritance of genetic information. It is thought that one function of such checkpoints is to ensure that cell division does not occur before DNA damage is repaired. However, in unicellular organisms, rapid cell multiplication confers a powerful selective advantage, leading to a dilemma. Is the activation of a DNA damage checkpoint compatible with rapid cell multiplication? By uncoupling the initiation of DNA replication from cell division, the Escherichia coli cell cycle offers a solution to this dilemma. Here, we show that a DNA double-strand break, which occurs once per replication cycle, induces the SOS response. This SOS induction is needed for cell survival due to a requirement for an elevated level of expression of the RecA protein. Cell division is delayed, leading to an increase in average cell length but with no detectable consequence on mutagenesis and little effect on growth rate and viability. The increase in cell length caused by chronic DNA double-strand break repair comprises three components: two types of increase in the unit cell size, one independent of SfiA and SlmA, the other dependent of the presence of SfiA and the absence of SlmA, and a filamentation component that is dependent on the presence of either SfiA or SlmA. These results imply that chronic checkpoint induction in E. coli is compatible with rapid cell multiplication. Therefore, under conditions of chronic low-level DNA damage, the SOS checkpoint operates seamlessly in a cell cycle where the initiation of DNA replication is uncoupled from cell division

    Nonspaced inverted DNA repeats are preferential targets for homology-directed gene repair in mammalian cells

    Get PDF
    DNA repeats constitute potential sites for the nucleation of secondary structures such as hairpins and cruciforms. Studies performed mostly in bacteria and yeast showed that these noncanonical DNA structures are breakage-prone, making them candidate targets for cellular DNA repair pathways. Possible culprits for fragility at repetitive DNA sequences include replication and transcription as well as the action of structure–specific nucleases. Despite their patent biological relevance, the parameters governing DNA repeat-associated chromosomal transactions remain ill-defined. Here, we established an episomal recombination system based on donor and acceptor complementary DNA templates to investigate the role of direct and inverted DNA repeats in homologous recombination (HR) in mammalian cells. This system allowed us also to ascertain in a stringent manner the impact of repetitive sequence replication on homology-directed gene repair. We found that nonspaced DNA repeats can, per se, engage the HR pathway of the cell and that this process is primarily dependent on their spacing and relative arrangement (i.e. parallel or antiparallel) rather than on their sequence. Indeed, our data demonstrate that contrary to direct and spaced inverted repeats, nonspaced inverted repeats are intrinsically recombinogenic motifs in mammalian cells lending experimental support to their role in genome dynamics in higher eukaryotes

    DISC1 complexes with TRAK1 and Miro1 to modulate anterograde axonal mitochondrial trafficking

    Get PDF
    Disrupted-In-Schizophrenia 1 (DISC1) is a candidate risk factor for schizophrenia, bipolar disorder and severe recurrent depression. Here, we demonstrate that DISC1 associates robustly with trafficking-protein-Kinesin-binding-1 which is, in turn, known to interact with the outer mitochondrial membrane proteins Miro1/2, linking mitochondria to the kinesin motor for microtubule-based subcellular trafficking. DISC1 also associates with Miro1 and is thus a component of functional mitochondrial transport complexes. Consistent with these obser-vations, in neuronal axons DISC1 promotes specifically anterogrademitochondrial transport. DISC1 thus parti-cipates directly inmitochondrial trafficking, which is essential for neural development and neurotransmission. Any factor affecting mitochondrial DISC1 function is hence likely to have deleterious consequences for the brain, potentially contributing to increased risk of psychiatric illness. Intriguingly, therefore, a rare putatively causal humanDISC1 sequence variant, 37W, impairs the ability of DISC1 to promote anterogrademitochondrial transport. This is likely related toanumberofmitochondrial abnormalities inducedbyexpressionofDISC1-37W, which redistributes mitochondrial DISC1 and enhances kinesin mitochondrial association, while also altering protein interactions within the mitochondrial transport complex
    corecore