725 research outputs found

    Measurement of high-order polarization mode dispersion

    Get PDF
    We demonstrate a new method to measure high-order polarization mode dispersion (PMD) using the Jones matrix exponential expansion. High-order PMD is characterized by measuring a series of characteristic matrices, which are convenient quantities for analyzing PMD effects in the time-domain. An experimental method is developed to estimate the validity range of the exponential expansion

    Polarization mode dispersion in radio-frequency interferometric embedded fiber-optic sensors

    Get PDF
    The effect of fiber birefringence on the propagation delay in an embedded fiber-optic strain sensor is studied. The polarization characteristics of the sensor are described in terms of polarization mode dispersion through the principal states of polarization and their differential group delay. Using these descriptors, an analytical expression for the response of the sensor for an arbitrary input state of polarization is given and experimentally verified. It is found that the differential group delay, as well as the input and output principal states of polarization, vary when the embedded fiber is strained, leading to fluctuations in the sensor output. The use of high birefringence fibers and different embedding geometries is examined as a means for reducing the polarization dependency of the sensor

    BCC vs. HCP - The Effect of Crystal Symmetry on the High Temperature Mobility of Solid 4^4He

    Full text link
    We report results of torsional oscillator (TO) experiments on solid 4^4He at temperatures above 1K. We have previously found that single crystals, once disordered, show some mobility (decoupled mass) even at these rather high temperatures. The decoupled mass fraction with single crystals is typically 20- 30%. In the present work we performed similar measurements on polycrystalline solid samples. The decoupled mass with polycrystals is much smaller, ∌\sim 1%, similar to what is observed by other groups. In particular, we compared the properties of samples grown with the TO's rotation axis at different orientations with respect to gravity. We found that the decoupled mass fraction of bcc samples is independent of the angle between the rotation axis and gravity. In contrast, hcp samples showed a significant difference in the fraction of decoupled mass as the angle between the rotation axis and gravity was varied between zero and 85 degrees. Dislocation dynamics in the solid offers one possible explanation of this anisotropy.Comment: 10 pages, 5 figures, to appear in Journal of Low Temperature Physics - special issue on Supersolidit

    On The Mobile Behavior of Solid 4^4He at High Temperatures

    Full text link
    We report studies of solid helium contained inside a torsional oscillator, at temperatures between 1.07K and 1.87K. We grew single crystals inside the oscillator using commercially pure 4^4He and 3^3He-4^4He mixtures containing 100 ppm 3^3He. Crystals were grown at constant temperature and pressure on the melting curve. At the end of the growth, the crystals were disordered, following which they partially decoupled from the oscillator. The fraction of the decoupled He mass was temperature and velocity dependent. Around 1K, the decoupled mass fraction for crystals grown from the mixture reached a limiting value of around 35%. In the case of crystals grown using commercially pure 4^4He at temperatures below 1.3K, this fraction was much smaller. This difference could possibly be associated with the roughening transition at the solid-liquid interface.Comment: 15 pages, 6 figure

    Overtaking CPU DBMSes with a GPU in whole-query analytic processing with parallelism-friendly execution plan optimization

    Get PDF
    Existing work on accelerating analytic DB query processing with (discrete) GPUs fails to fully realize their potential for speedup through parallelism: Published results do not achieve significant speedup over more performant CPU-only DBMSes when processing complete queries. This paper presents a successful

    Wigner Crystalline Edges in nu < 1 Quantum Dots

    Full text link
    We investigate the edge reconstruction phenomenon believed to occur in quantum dots in the quantum Hall regime when the filling fraction is nu < 1. Our approach involves the examination of large dots (< 40 electrons) using a partial diagonalization technique in which the occupancies of the deep interior orbitals are frozen. To interpret the results of this calculation, we evaluate the overlap between the diagonalized ground state and a set of trial wavefunctions which we call projected necklace (PN) states. A PN state is simply the angular momentum projection of a maximum density droplet surrounded by a ring of localized electrons. Our calculations reveal that PN states have up to 99% overlap with the diagonalized ground states, and are lower in energy than the states identified in Chamon and Wen's study of the edge reconstruction.Comment: 8 pages, 8 figures, to be published in Phys. Rev.

    Cognitive foundations of impartial punitive decision making in organizations: attribution and abstraction

    Get PDF
    Partial decision making about disciplinary responses to misbehavior is generally considered unfair and undermines the effectiveness of punishment. Nonetheless, organizational actors often struggle to remain impartial in situations that call for punishment. Impartiality appears specifically hard to obtain when some element of the transgression reflects badly upon the punisher themselves, for instance, when in the past the punisher has benefited from the misbehavior, even if just derivatively. In this paper, we argue that in such cases, punishers tend to defensively attribute causes of the transgression to the circumstances in order to protect their own self‐image, thus leading them to relatively lenient punishments. However, we also suggest that psychological impartiality can be obtained through cognitive abstraction. An abstract understanding (high‐level construal) of the punitive situation puts the focus squarely on the gist of the situation and makes circumstantial details less likely to be cognitively available. This hinders defensive circumstantial attribution. We show in a field study and an experiment that partiality in making decisions about punishments occurs under conditions of low‐level (i.e., concrete) construal, whereas impartiality is facilitated by high‐level (i.e., abstract) construal

    Tree-level FCNC in the B system: from CP asymmetries to rare decays

    Get PDF
    Tree-level Flavor-Changing Neutral Currents (FCNC) are characteristic of models with extra vector-like quarks. These new couplings can strongly modify the B^0 CP asymmetries without conflicting with low--energy constraints. In the light of a low CP asymmetry in B --> J/\psi K_{S}, we discuss the implications of these contributions. We find that even these low values can be easily accommodated in these models. Furthermore, we show that the new data from B factories tend to favor an O(20) enhancement of the b --> d l \bar{l} transition over the SM expectation.Comment: 5 pages, 4 figures. Accepted version in PRD. Updated analysis with the new results from BaBar and BELLE. Figures enlarged, small typos corrected. Conclusions essentially unchange
    • 

    corecore