
Overtaking CPU DBMSes with a GPU
in Whole-Query Analytic Processing

with Parallelism-Friendly Execution Plan Optimization

Adnan Agbaria1, David Minor2,
Natan Peterfruend3, Eyal Rozenberg4, Ofer Rosenberg5, and Roman Talyansky6 ı

1 Intel | adnan.agbaria@intel.com

2 GE Global Research | david.minor1@ge.com

3 Huawei Research | natan.peterfruend@huawei.com

4 CWI Amsterdam | E.Rozenberg@cwi.nl

5
oferrose73@gmail.com

6 Huawei Research | roman.talyansky@huawei.com

Abstract. Existing work on accelerating analytic DB query processing
with (discrete) GPUs fails to fully realize their potential for speedup through
parallelism: Published results do not achieve significant speedup over more
performant CPU-only DBMSes when processing complete queries.
This paper presents a successful e�ort to better meet this challenge, in the
form of a proof-of-concept query processing framework. The framework
constitutes a graft onto an existing DBMS, altering some parts of it and
replacing its execution engine entirely. It intensively refactors query ex-
ecution plans, making them better-parallelizable, before executing them
on either a CPU or on GPU. This results in a significant speedup even on
a CPU, and a further speedup when using a GPU, over the chosen host
DBMS (MonetDB) — which itself already bests most published results
utilizing a GPU for query processing.
Finally, we outline some concrete future improvements on our results which
can cut processing time by half and possibly much more.

1 Introduction

Database Management Systems (DBMSes) in wide use today were designed for
execution on a ‘serial’ processing unit. Even when multi-thread and multi-core
capabilities are taken into account in the design, massive parallelism is typically
not a significant consideration: The execution strategy, the fundamental internal
operations used in executing queries, the representation of data in memory — these
are all incarnations of original designs with serial execution in mind, even if these
days. Even when multiple threads are used, they mostly behaving like so many
single-thread DBMSes, each processing a large chunk of the data, independently.

As the use of GPUs for computation more general than graphics processing
is spreading, industry and academic have begun exploring its potential use in
ı Work carried out by all authors as members of the Heterogeneous Computing Group

at Huawei Research, Israel. Authors appear in alphabetical order.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CWI's Institutional Repository

https://core.ac.uk/display/301654530?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

processing relational database queries. Initially, contributions such as [5] focused
on e�cient implementation of primitive query-processing-related computational
operations: These relatively self-contained pieces of code are what the CPU actually
spends time on; and replacing them with carefully-optimized kernels running on
the GPU does accelerate them. However, this does not immediately translate to
impressive acceleration in processing entire queries.

This fact has motivated two avenues of research. One of them, not explored here,
focuses on integrated CPU-GPU processors, such as AMD’s APUs. These remove
the bandwidth limitations of the PCIe bus, a key reason for the underwhelming per-
formance of GPU DBMSs; [14] is a recent contribution in this vein, with references to
additional work. A second approach is processing queries as a whole rather than only
their constituent operations. Most experimental work in this avenue (ours included)
involves grafts onto an existing host DBMS. A graft overrides parts of the normal
compilation process and modifies existing code to create interfaces and hooks for
new and replacement functionality of complete sub-sections of the query plan. In-
stead of merely replacing the code for execution of individual query plan operations,
they alter and substitute large sections of the entire plan. Thus the generated plans
are significantly di�erent, and so is the execution mechanism, which is sometimes re-
placed altogether. Prominent recent examples of such frameworks include Red Fox
[21] and GPU-DB[23] (also cf. [4]). However, despite the progress made so far, these
e�orts have not produced systems with query processing speed on par with the more
performant free-software DBMSes, such as MonetDB [11, 10] (which are themselves
bested by some closed-source DBMSes, such as Actian Vector[24] and HyPerDB [7]).

We perceived previous work as being overly attached to existing DBMS’ massive-
parallelism-unfriendly execution planning — in other words, it seems that most
often they are still having a GPU “do a CPU’s job”.

To gain a performance benefit from using a GPU, we decided that instead of
optimizing its execution of the tasks it is given by the traditional SQL optimizer,
we should instead focus our e�ort on creating new GPU-freindly tasks and feeding
them conveniently-represented data on which they could shine. Very roughly, such
computational work is characterized by:

– Less code path divergence;
– More work by related threads on small, localized data;
– Well-coalesced memory accesses;
– Avoidance and circumvention of data dependencies, or at least the ‘flattening

out’ of dependency relation into a shallow forest;
– a focus on throughput rather than on latency;

Some constituent operations in CPU-targeted execution plans cannot be im-
plemented as-is in this fashion; but often their semantics can be tweaked, or their
input or output formats altered, so that they admit a GPU-parallelism-friendly
implementation (as is well-evidenced by the recent study of approaches for optimiz-
ing LIKE pattern matching on string columns [16]). Although many operations do
not allow for such an adaptation, or do not benefit from it as significantly as others

— we need to remind ourselves of our objective: It is the plan whose execution we
wish to speed up, not the individual operations that are just a means to that end.

Often including a less-then-optimal operation in an optimal GPU query plan will
still lead to an overall improvement for the entire plan. In most cases, however,
we can, in fact, avoid computational operations which the GPU does not favor,
choosing alternate (sub)plans for that part of the query’s execution. This approach
underpins the query processing framework we developed as a proof-of-concept,
and as the rest of this article demonstrates, it provides a significant improvement
over other state-of-the-art in processing systems for full TPC-H queries.

2 The processing framework

With numerous query processing frameworks utilizing GPUs already in existence,
Breß, Heimel, et alia devised a classification scheme for these in [4, §4.3]. Before
describing our framework, here is how it fits into this scheme:

Storage: Location In-memory only
Storage: Model Column store
JIT compilation None (but with IR transforms)
Processing: [x] at-a-time Operator (not tuple or block)
Device support Single-device and multi-device
Transactions Not supported (read-only)
Hardware portability CPUs & (CUDA) GPUs

Implemented Breß-et-alia-listed optimizations: GPU-aware query optimizer;
E�cient data placement strategy; Overlap of data transfer and processing
(partial); Pinned host memory.

Table 1. Breß-et-al.-style classification

2.1 From query to execution run

The processing framework adopts the common approach of grafting onto an existing
DBMS; our choice was the analytics-oriented column store MonetDB. Figure 1
summarizes which components of MonetDB are replaced or modified and which
additions the graft introduces. It is helpful to the diagram keep in mind as the
processing of incoming queries is described further below and in Section 3.

As a new (analytic) query arrives, the host DBMS parses it, considers its
relational algebra, and generates an initial execution plan using its internal repre-
sentation — for MonetDB, the single-assignment language MAL [19]. We interrupt
the usual sequence of optimizers which MonetDB applies, replacing some of the
final optimizers with a mock optimizer, whose task is to convert the sequence of
MAL instructions into an alternative intermediate representation. Specifically,
MonetDB’s data-parallelism-inducing transformations are not applied; our exe-
cution engine will later transform the plan to utilize multiple CPU cores and/or
GPU devices instead. Finally, instead of invoking MonetDB’s execution engine
/ MAL program interpreter (named GDK), our own execution engine is invoked,
ignoring the MAL sequence itself.

Our execution engine takes the following input: A (directed acyclic) graph, the
‘execution’ of which should obtain the query results; access to a library of GPU

GDK execu	on engine

Intermediate

Representa	on

Op	mizers

SQL Parser and

IR Generator

In-memory storage

AXE execu	on engine

Schema

preprocessing

MonetDB IR ->

AXE IR translator

Data-parallelism-
related op	mizers

alterna	ve GPU-execu	on-

related op	mizers

Fig. 1. The processing framework as a graft onto MonetDB

optimized computational primitive implementations (as these are not inherent
to the engine); access to a library of similar implementations for CPUs; locations
of bu�ers in the system’s main memory (for schema columns and auxiliary data;
see Subsection 2.3); and a set of analytic-query-related transformation rules it
may apply to its execution graph. When the execution engine completes its work,
results are present in main memory and are passed back to MonetDB as though
produced by its own native execution of the query.

2.2 The execution engine

Our query processing framework had at its core an execution engine called AXE
(Adaptive Execution Engine) developed by the Heterogeneous Computing group of
Huawei’s Shannon Lab; this engine was designed independently of its specific use in
this work — as the group’s areas of interest are not limited to analytic DB query pro-
cessing. It was designed to accommodate multiple types of computational devices
and applications. It is built on the abstraction of a DAG of computational operations.
Operations are drawn from a pool of hand-optimized domain-specific libraries. A run
of the execution engine involves the concurrent and sequential execution of multiple
operations. Some of these operations are massively parallel (e.g. binary vector oper-
ations) and others are run in task parallel fashion (e.g host to device data transfers).
AXE operations operate on bu�ers — an abstraction of regions of memory, which
may be instantiated on the memory space of di�erent devices, copied between mem-
ory spaces, pre-allocated, resized and set as inputs or outputs for operations both

on and o� the device. The AXE engine’s IR (intermediate representation) is a DAG-
like execution plan, describing the dependencies, operations and bu�ers needed for
execution, along with additional information to help guide transformations by the
engine. An internal queuing and scheduling mechanism allows for asynchronous
execution of operations, dependency enforcement, synchronization and task level
parallelism. Fine-grained, regularized (often synchronous) parallelism — typical of
GPU code — is encapsulated into the implementations of the operations themselves,
so that the engine is not GPU-specific. AXE also supports data parallelism, by
cloning subgraphs at the IR level, splitting inputs among the subgraphs, and finally
joining the results computed by each of these partition subgraphs . In order to accom-
modate the varigated of SQL semantics, a variety of partitioning and joining schemes
are used (e.g. duplicate all, bit-or). Which scheme to use is providing by annotations
over the inputs/outputs of individual operations, or reverts to a standard default.

Execution plan transformations occur at two distinct stages in the compila-
tion/execution process. To see why this is so, consider the following: The higher
strata of transformations, those within the DBMS interpreter itself, are oblivious of
the hardware on which the plan will eventually execute, e.g.. which computational
devices, device capabilities, communication buses, memory space sizes, etc. The
lower stratum of transformations, those taking place within our execution engine,
is oblivious to the original application which provided the engine with the plan.
It holds no information regarding databases, queries, relational tables, foreign-
key relations and so on. This separation of concerns between the domain-specific
(higher-strata, within DBMS) and hardware-specific (lower-strata, within AXE) is
a useful technique, allowing for e�ective execution optimization catering to di�erent
applications (some more on this in Section 3). Of course, the separation is some-
what artificial, as hardware-related choices impact the benefit of domain-specific
choices w.r.t. the plan; we therefore compensate with hints, statistics and suggested
partitioning and transformation options, passed down to the runtime engine in
addition to the actual plan, compensate address this fact partially. This aspect
of the design merits a separate discussion which is beyond the scope of this paper.

2.3 Schema preprocessing

When the modified host DBMS passes the execution engine a plan to execute, this ex-
ecution will not be applied merely to the DB columns themselves, as-is. Instead, the
execution engine receives references to the results of some o�ine preprocessing of the
schema. In a row-oriented DBMS such preprocessed data might be multiple indices
into di�erent tables; and MonetDB has its “imprints” structure [15]. Preprocessing
can theoretically be quite extensive (and time-consuming); in some work on GPU
acceleration, authors go as far as pre-joining tables or materializing full denormal-
izations. Also, the more auxiliary information one maintains, the less one can scale a
DBMS while remaining entirely in-memory; but such economy of resources is beyond
the scope of this work (especialy since we do not use compression; see Section 6).

For our work with the TPC-H benchmark, our preprocessing adhered strictly
to its rules and restrictions, i.e. we limited it to single columns of data, never
involving information regarding multiple columns. Of course, the di�erent choices

of preprocessed data made available to a query processor muddy the waters to
some extent when measuring and comparing performance, and this is especially
true for comparisons with processing frameworks not bound by TPC-H restrictions
(such as GPU-DB [23] or the recent results in [14]).

The data derived from each column and used in this work falls into one the
following categories:

scalars: Data of the column’s own type (e.g. minimum, maximum, median, mode),
integral statistics (e.g. support size) and binary predicates (e.g. sorted/unsorted)
same-dimension auxiliary columns: such as a sorted copy of a column, or a
breakdown of date/time columns into their constituent subfields
support-dimension auxiliary columns: Essentially a small auxiliary table
with one row per distinct value in the original column, containing the histogram,
as well as minimum and maximum positions of incidence, for each value (i.e. a
reverse-index for the column).

The host DBMS, MonetDB, is not made aware of this preprocessed data — nor
does our framework use MonetDB’s Imprints or any other such auxiliary data.

3 Making execution plans more amenable to (GPU)
parallelism

Setting aside the specifics of our framework design, and how it di�ers from the
host DBMS’s, this paper’s title begs the following question: Why is query plan
optimization particularly critical for GPU execution performance?

The general importance of query optimization to processing performance is
well-recognized [17, Chapter 7] and widely studied; Join order, nested query re-
formulation, intelligent estimation of intermediary result cardinality and so on.
Our framework does not actually brave this important task: It does not try to
second-guess most of the host DBMSes decisions; while this would probably be
useful as well, the focus of this work is more lower-level. Namely, our optimizing
transformations regard
Implementation special-casing for generally-challenging computations using
statistics & predicates obtained by preprocessing the schema (or in some rare cases
at query runtime).
Representation format change including mostly two aspects of how data is
represented: dense vs. sparse representations of subsets/subsequences (see Sub-
section 3.1), and sortedness constraints (whether plan operations are required to
produce sorted output, and whether they require their inputs to be sorted).
Missing implementation circumvention Replacement of operations without
GPU implementations by multi-node subgraphs with equivalent output.
Fusion of certain particularly-suitable consecutive operations. This is not the
comprehensive fusion of multiple operations using compilation infrastructure used
in HyPer [12] or Spark 2.0 Catalyst [1]; instead, we apply more complex fusion, im-
plemented a-priori in CUDA code, which a compiler could not automatically derive.

Fission Some plan operations have inherently multi-staged implementations (at
least on a GPU); others can be semantically decomposed (e.g. in a reversal of the
fusion described above). This can be reflected in the plan, allowing constituent
parts or phases to be involved with other operations in the further application of
transformation rules.
Cleanup when duplicate/inverse operations, remain in the plan after other trans-
formations, or when an operation’s outputs are unused, etc.

These transformations are applied greedily — that is, no change is made to the
plan unless it is certain to be positively beneficial (to the plan as a whole, individual
operations may not be optimal). Having examined the various kinds of query plans
that MonetDB generates, we formulated a number of transformation rules — limited
to small subgraphs — which are likely to speed up execution. For each of these we
formulated constraints on columns, intermediary bu�ers and operations involved,
under which this likelihood of benefit becomes a certainty. These constraints are
expressible in terms of the statistics and predicates we obtain regarding the data as
part of the schema preprocessing described in Subsection 2.3. Of course, we strove
to formulate rules with the weakest possible applicability constraints, to maximize
variety and usefulness over multiple queries. Rules are applied repeatedly until a
fixed point is reached, with the exception of an initial analytic phase. Thus our
optimization of an execution plan is rule-based, and mostly heuristic.

It should also be noted our current set of rules is not very extensive. Even for
the queries for which we present results, one could well conceive of additional rules
applicable as-is (see the end of Subsection 3.3 below), or additional auxiliary data
(Bloom filters, Imprints, etc.) and new rules able to utilize it. Although we probably
missed many opportunities for further optimization, this paucity of rules prevented
us from facing the problem of inopportune choice of rule application order leading
our framework away from better optimization routes.

The rest of this section is an elaboration on two of the aspects mentioned above,
followed by a detailed example of how all aspects combine in the optimization for
a single specific query.

3.1 Optimization aspect: Subset/sequence representation

Consider the result of some predicate applied to a DB column. In MonetDB
(v11.15.11) this result is sparse — a column of matching record indices — rather than
a dense bit vector. Computing the former, a (serial) CPU core repeatedly appends
matching indices to the output; but this does not parallelize very well, since the
final location to write to for any individual element satisfying the predicate requires
information regarding previous matches. Some parallelization is still possible here:
For example, one may compute a prefix-sum of the number of elements passing
the filter — and well-optimized prefix sum implementations on GPUs are available
[9, 18] — but this is still much slower than element-wise bit-setting.

From a complexity-theoretical perspective, a sparse representation is certainly
the appropriate choice: Further computation is linear, based on the length of the
result, not of the original data. But in practice, we count bits: A record index is
likely 4 or 8 bytes; and memory is typically read in units of a cache line (64B on Intel

Haswell, 32B/128B on nVIDIA Kepler & Maxwell). So only for very selective pred-
icates does the benefit-in-principle actually manifest. A sequential-CPU-oriented
DB might prefer the sparse representation earlier: It has fewer elements to perform
writes for, i.e. less sequential work (ignoring caching at least); and presumably this
is the case for MonetDB. A DBMS oriented for massive regular parallelism will
opt for the dense representation in most cases.

Most existing GPU acceleration frameworks seem to resign themselves to
respecting the DBMS’ data-structure choices, and will compute this sparse result as
best they can; after all, the plan uses this array of indices later on. But you can ask the
question — does the plan really have to use it? As will be illustrated in Subsection 3.3
below, this use is itself conditioned on this choice, which can be undone or overruled.
When doing so, one often ends up avoiding some reordering of data, a costly
e�ort in itself, and expanding the opportunities for using more parallel-e�cient
computational primitives. Last but not least, dense subset representation often lends
itself to avoiding the need to produce sorted intermediary results (again, see below).

3.2 Optimization aspect: Join special-casing

A general-case single-column inner Join in a (MonetDB-like) column-store takes
as inputs two columns (the LHS and the RHS; assume they hold integral values).
The result of the Join are two columns, LHS

out

and RHS
out

, whose length is the
number of matching pairs; the tuple (LHS

out

[i],RHS
out

[i]) is the ith match found
by the Join, so i may range from 0 to |LHS◊RHS|≠1 theoretically (and the output
is sorted lexicographically).

Our framework observes the following noteworthy features for each column
with respect to a Join operation (phrased in terms of the LHS below):

– Is this a column coming directly from the schema, or is it an intermediate result
following other operations?

– Are the column values sorted? If so, do they appear consecutively with no gaps
(i.e. LHS[i+1]=LHS[i]+1)?

– What are the minimum and maximum column values?
– What are the minimum and maximum multiplicities of individual values within

the column?
– Is the other input column known to contain all values in this one?
– Is every value in the column known to have at least one match on the other side?
– Is the Join output only used to filter the input column?

After applying our preprocessing, whenever a query comes in we have most of
this information readily available, without computing anything — using scalar val-
ues and predicates regarding individual columns, and the schema structure. Some
of these statistics may not be available — minimum and maximum values, multi-
plicities for non-schema columns — and in some cases (see below) we may take the
time to compute them. Now, here are several cases of Joins for which we had special
Join implementations (each corresponding to combinations of the above criteria):
FK to dense PK: LHS: All values match. RHS: Dense.

Self-join of filtered schema column: LHS: All values match. RHS: Subset of
a schema column, sorted, known max. multiplicity.
FK to small-support PK: LHS: All values match. RHS: max. multiplicity 1;
LHS values are in the range [v

min

,v
min

]; there’s su�cient memory for a bit vector
of length v

max

≠v
min

+1.
RHS-Unique Join: LHS: No assumptions. RHS: max multiplicity 1.
For each of these special cases we have a corresponding transformation rule; and
these rules are applied, when applicable, in the above order of priority, to all Join

operations encountered in the execution plan. Some of these rules are replacements
of the single Join operation DAG node with the appropriate special-case-Join node

— for which we’ve written hand-optimized special-case implementations. In other
rules, the Join is replaced with a small subgraph of non-Join computations (e.g.
using original values instead of hash keys).

3.3 A query example: Optimizing TPC-H Q4 execution

Typically, no single transformation rule mentioned above is su�cient to funda-
mentally change how a query is processed; it’s rather a combination of rules which
allows for more fundamental changes. We illustrate how the rules combine using
the sequence of transformations our framework applies for TPC-H Q4 \ref{Q4}.
We consider the main part of the original plan, but for brevity, dropping the part
retrieving a string column at the end. 7

Figure 2 represents our initial derivation of a plan from the one obtained from
MonetDB. Without going into detail, this involves removing some redundant/irrel-
evant MAL statements from MonetDB’s own plan, and more importantly: Splitting
up these operations into constituent parts, to the extent we have kernels for them

— particularly when sparse/dense format changes are involved. Now, this can be
considered a non-greedy transformation — as fusing these operations back causes a
slowdown — which our subsequent repeated transformation process would not ap-
ply. However, this slowdown is usually marginal: It’s a write an intermediary bu�er
to global memory by the first constituent operation, and a read of that bu�er by the
second. This opens up the possibility of some proper optimization (see below); and
if any such non-trivial optimization can be applied, it will most likely compensate
for the extra I/O. The diagram is a dataflow DAG, with source nodes being schema
columns or constant values, and all other nodes being computational operations.
The full plan for TPC-H Q4 has two sink nodes — for the order counts and priority
string columns— but the part of the plan generating the latter has been removed to
focus the example on the former. Also removed — for brevity and legibility — are the
details of which edge targets which parameter of its destination operation. Table 2 de-
scribes the semantics of the operations used on the plan and its transformed versions.

Considering the operations appearing in the initial plan, in Figure 2, one notices
they produce mostly sorted sparse-representations (sorted indices into columns)
intermediary columns; and that many of the operations require inputs of this kind.

7 Q4 was chosen for this example for being a query with a short plan with few operations,
but involving more than one table.

const

Between

o_orderdateconst

DenseToSparse
(sorted)o_orderkey

Gather

Join

SparseToDense

l_commitdate

LessThan

l_receiptdate

DenseToSparse
(sorted)l_orderkey

Gather

Select

Count

Gather

o_orderpriority

|o_orderpriority|

Fig. 2. The initial execution plan for Q4 (string output column clipped)

Operation Column inputs Output description

Select data D
bit vector F

Values in D whose corresponding bit in F
is set

Gather data D
indices I

ouput[i]=D[I[i]]

Scatter
Disjunction

data D
indices I
zero-initialized T

T [I[i]]=D[i]

DenseToSparse bit vector D The indices of all bits set in D

DenseToSparse indices I A bit vector with bit i set i� iœI

LessThan,
BitwiseAnd

L, R
(of same type)

Elementwise binary operations

Between input X A bit vector with bit i set i� c1 ÆX[i]<c2

Join L, R
(of same type)

all pairs (i,j) such that L[i]=R[j], in the
form of columns of corresponding i’s and j’s

Count indices I A histogram of I, where the bins are 0...m
for a known maximum value m.

Table 2. TPC-H Q4 execution plan operation semantics

Our optimizer performs the following transformations; note that for some of these
transformations there are requirements not represented in the diagrams, most
frequently “no other outgoing edges” when removing operations. :

1. Subsequence semi-join special-casing: Initially it seems we cannot get
rid of the DenseToSparse operations. Consider, however, the use of the ORDERS
table in the plan: The table is ‘first’ used is to Gather data for the Foreign Key
– Primary Key Join. The combination of DenseToSparse and Gather admits an

optimization in itself (see below); but, there is a far more beneficial transfor-
mation possible here: The supposedly-general-case Join is actually made in
the context of a Semi-join, a filtering of the ORDERS table. This can be inferred
locally (seeing how the o_orderdate DenseToSparse output is used both in the
Join and immediately with the Join’s output); Now, instead of Join’ing, we can
apply the filter on a dense representation in the value space of {l|o}_orderkey
as a BitwiseAnd (Figure 3).

LHS indices
(sorted)

Gather

Join

SparseToDense

RHS data
(sorted)

Select

LHS data

(a) before

LHS data

Select

Gather

LogicalAnd

RHS indices
(sorted)

SparseToDense

SparseToDense

LHS indices
(sorted)

(b) after

Fig. 3. TPC-H Q4 Transformation 1
2. Cleanup I: The previous transformation leaves us with a dense-to-sparse-to-

dense conversion sequence; we can’t eliminate it entirely, since the intermediate
sparse result is still in use, but we may bypass it and thus discard one of its
constituent operations (Figure 4).

bit vector

DenseToSparse
(sorted)

indices
(sorted) SparseToDense

bit vector

(a) before

bit vector

DenseToSparse
(sorted)

indices
(sorted)

(b) after

Fig. 4. TPC-H Q4 Transformation 2
3. Pushing DenseToSparse down: The remaining use of the sparse ORDERS

filter results is in Selecting from the semi-join results, which themselves are in
the form of a dense subsequence representation due to transformation 1. The
DenseToSparse can therefore be “pushed down” past the Select, which becomes
a bitwise AND to preserve its semantics (Figure 5).

4. Cleanup II: We now have an artifact due to previous transformations: redun-
dant BitwiseAnd operations; we remove one of them (Figure 6).

5. Fusing DenseToSparse and Gather: We note that the action of Select can
be described as converting a bit vector input into a sparse representation,

bit vector 1

DenseToSparse
(sorted)

Select

bit vector

bit vector 2

(a) before

bit vector 1

BitwiseAnd

DenseToSparse
(sorted)

indices
(sorted)

bit vector 2

(b) after

Fig. 5. TPC-H Q4 Transformation 3

bit vector 1

BitwiseAnd

bit vector 2

BitwiseAnd

bit vector

(a) before

bit vector 1

BitwiseAnd

bit vector 2

bit vector

(b) after

Fig. 6. TPC-H Q4 Transformation 4
then replacing the indices with actual data using a Gather; and that if the
DenseToSparse has sorted output, so will the Select. In the other direction,
these two operations can be fused together into a Select (Figure 7); we now
do so for both our DenseToSparse’s.

bit vector

DenseToSparse
(sorted) full-column data

Gather

filtered data

(a) before

bit vector

Select
(sorted)

full-column data

filtered data

(b) after

Fig. 7. TPC-H Q4 Transformation 5 (applied twice)

6. Fusing Select and SparseToDense: These two operations may be fused into
a ScatterDisjunction (Figure 8), similarly to transformation 5. This transforma-
tion has an attractive side-e�ect: We are now rid of the sortedness constraints
for one of the filters, as its sorted (sparse) results are no longer used anywhere.

7. Dropping last sortedness constraint: The output of the remaining Select

operation (of the created earlier by fusions), is only used by a Count operation.
While Count might benefit from its input being sorted — it certainly doesn’t
require sortedness (and in this specific case the benefit would be marginal).

bit vector

Select
(sorted)

full-column data

SparseToDense

bit vector
(different space)

(a) before

bit vector

ScatterDisjunction

full-column data
(used as indices)

bit vector
(different space)

(b) after

Fig. 8. TPC-H Q4 Transformation 6
Thus we have pushed the sortedness requirement further enough down the
plan DAG to a point where it can be simply discarded (Figure 9).

bit vector

Select
(sorted)

full-column data
(used as indices)

filtered data
(no use requires sortedness)

(a) before

bit vector

Select

full-column data
(used as indices)

filtered data
(unsorted)

(b) after

Fig. 9. TPC-H Q4 Transformation 7

The end result is the pleasing, relatively parallelism-friendly execution plan in
Figure 10; the kernels corresponding to each of the green nodes would now gets sched-
uled to execute on the GPU. However, on closer inspection we note that even further
optimization of the plan is possible: ScatterDisjunction can be avoided in favor of
Gathering after applying a fixed o�set to the indices, and Select can be avoided alto-
gether in favor of a predicated Count; this would make the plan embarassingly paral-
lel except for the final aggregation — so much so that it might theoretically be com-
piled into a single GPU kernel. However, these additional optimizations were not sup-
ported by our framework when the experimental results (Section 4) were obtained.

4 Experimental Results

4.1 Test platform, protocol and procedures

Results were all obtained using a 2-socket machine, with 2 Intel Xeon E5-2690 CPUs
(8-core each) clocked 2.9 GHz. Each socket had its won independent PCIe 3 bus,
through which it was connected to a GeForce GTX 780 Ti card (MSI TwinFrozer,
clocked at 875 MHz). The machine ran Kubuntu GNU/Linux 14.04, CUDA 7.0
RC and nVIDIA driver v346.29. The reference DBMS was an unaltered version
of MonetDB [11] v11.15.11 (by now not the latest version), using 32 threads.

We tested using queries from the TPC-H benchmark [20]: Q1, Q4, Q9 and Q21
(ranging from simple to complex). This limitation is the result of a constrained

const

Between

o_orderdate const

BitwiseAnd

o_orderkey

Gather

l_commitdate

LessThan

l_receiptdate

ScatterDisjunction

l_orderkey

Count

o_orderpriority

Select |o_orderpriority|

Fig. 10. Final execution plan for Q4 (string output column clipped)
amount of time and e�ort to put into this proof-of-concept — which is not a
full-fledged query processor. We did not send random queries to the host DBMS
repeatedly over a prolonged period of time (as in the actual TPC-H procuedure);
rather, we tested individual queries separately on the cold DBMS, immediately
after it was loaded. Timing figures are the mean over 3 runs, in milliseconds. The
database Scale Factor (SF) is 1 unless otherwise stated.

4.2 TPC-H query processing time comparison

A ‘bottom line’ of our results appears in Table 3: Execution time for the final query
plan for all of our benchmarked queries. A result for CPU execution of Q21 is
missing as it requires a yet-unimplemented feature of our subgraph partitioning
feature; and without it, performance is dismal (as our multi-threaded execution
depends on subgraph partition).

TPC-H Query Q1 Q4 Q9 Q21

MonetDB 159.4 ms 54.0 ms 125.9 ms 217.5 ms
MonetDB/AXE CPU 41.9 ms 24.5 ms 31.1 ms
MonetDB/AXE GPU 25.8 ms 18.4 ms 21.5 ms 44.0 ms

Table 3. Final plan execution times (SF 1 including I/O)

The speedup over MonetDB execution ranges from 2.9 to 6.8; in a more apples-
to-apples comparison — the same modified plan on a CPU rather than a GPU —
the speedup factor ranges from 1.3 to 1.6. This too should be taken with a large
grain of salt, since the comparison is between two CPUs “against” just one GPU.
The more important figure is the GPU plan execution time itself.

The results charted in Table 3 do not include the time spent by MonetDB
or our framework on parsing the query and preparing the plan; Figure 11 adds
this information, as part of a breakdown of the overall query processing time into
(mostly-consecutive) phases.

One obvious problem is the large amounts of time spent before query execution
even begins. This is particularly bad in our CPU-only configuration, which is un-

MonetDB AXE CPU AXE GPU MonetDB AXE CPU AXE GPU MonetDB AXE CPU AXE GPU MonetDB AXE GPU
Q01 Q04 Q09 Q21

0

25

50

75

100

125

150

175

200

GPU total

CPU Total

Our transformations

MonetDB Optimizers

+217.5

Fig. 11. Processing time breakdown (SF 1); clipped at 250ms
fortunately ine�cient in transforming the plan (it performs a 32-way partitioning
of the execution graph, in an unoptimized fashion; and this takes more time than
all other transformations combined). MonetDB also seems to su�er from a similar
phenomenon when adapting a complex execution plan such as Q21 to accommodate
many threads. Such deficiencies can be mostly be done away with by straightforward
optimization of our code (as opposed to optimizing the execution plan); we simply
lacked the time to do so before our work needed to be wrapped up for publication.

Another issue noticeable in the chart is the ‘GPU idle overhead’, comprising
an initial period before the GPU receives any data, and a final period after it has
sent back all of its results. Some of this time is taken up by subgraph partition
splitters and joiners; some is due to implementation artifacts which can probably
be optimized away; and some of if it are some final operations on a tiny amount
of data, which are not scheduled to run on the GPU (but possibly could have).

4.3 GPU activity breakdown

Let us dig into the GPUs’ activity with Figure 12, which breaks the GPU time
down into the activities of I/O (over PCI/e) and Compute.

Q01

Q04

Q09

Q21

54%

84%

69%

64%

24%

4%

9%

9%

22%

2%

3%

6%

1%

10%

20%

21%

Idle

Compute

Compute+I/O

I/O Only

Fig. 12. GPU time breakdown (single-GPU, SF 1)

This illustrates very clearly what is the “bane” of discrete GPU; Most of the time
is spent on nothing but I/O over the PCIe bus. This point is discussed in Section 6
below. An interesting question is how much would this disappear in a multi-query
situation, where contention over the GPU’s and PCIe bus would be high.

Note that Figure 12 shows some of the GPU time as entirely idle; this is an
artifact of our implementation, due to over-conservative stream synchronization,

and can be reduced to a negligible level with some programming e�ort, but no
degradation of performance elsewhere

Going another level deeper, let us consider the breakdown the GPU’s Compute
activity, presented in Figure 13. A query execution run involves a few dozens of
technically distinct kernels, but for clarity of presentation we place them in several
groups (e.g. elementwise arithmetic of all data types), and limit ourselves to the
top six time consumers for each query. These take up between 92% and 98.8% of
kernel execution time, making 6 a reasonable cuto� point.

Reduce by Index

Histogram

Gather

Select Indices

(elementwise arithmetic)

Combine Index Columns

0.0 2.0 4.0 6.0 8.0 10.0
7.80

3.31

1.80

1.62

1.40

0.28

(a) TPC-H Q1

RHS-Unique Join

Select Indices Sorted

Elementwise Compare

Gather

Select

Histogram

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.97

0.83

0.35

0.26

0.05

0.02

(b) TPC-H Q4

Gather

Foreign Key Join

Substring Search

Select Indices

Reduce by Index

(elementwise arithmetic)

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8
2.37

1.09

0.83

0.33

0.11

0.09

(c) TPC-H Q9

RHS-Unique Join

Gather

Select Indices Sorted

Self-Join

Get Occurrence Statistics

(elementwise comparison)

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8
2.47

1.45

0.97

0.56

0.39

0.32

(d) TPC-H Q21

Fig. 13. Top time-consuming operations (msec)

Space constraints preclude a discussion relating these time consumption dis-
tributions to the relevant queries. It is the authors’ belief that, in general, such
query-specific breakdowns of time by computational operation are lacking in many
papers on DBMS performance enhancements, especially those involving GPUs —
while they are an important guide for the researcher or engineer regarding what
merits further optimization (or rather, circumvention).

4.4 E�ects of increasing database size

We tested our frameworks with scale factors 1–8 (1 GB – 8 GB total size); these
are not so high by today’s standards, but our framework lacks a GPU memory
management mechanism, and our GPU’s available memory was just 3 GB. For-
tunately, the sample points of SF 1,2,4,8 already allow some visualization of trends
as the DB scales, in Figure 14.

SF 1

SF 2

SF 4

SF 8

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Overhead

GPU Idle

GPU Compute

GPU I/O+Compute

GPU I/O

Our transformations

MonetDB optimizers

Fig. 14. TPC-H Q4 processing time breakdown with increasing DB size, GPU execution
Besides the obvious decrease in weight of the initial work on the plan relative

execution proper, we note a further increase in the fraction of time spent on I/O
only, i.e. the “bane of the discrete GPU” from Figure 12 becomes even more
pronounced. On the other hand, we note an improvement in Compute-I/O overlap,
as deeper computation nodes in the execution DAG tend to scale sub-linearly in
their duration with DB size. Note we have taken TPC-H Q4 as the example, but
the trends are similar in the other three queries.

5 Comparison with other work

Unfortunately, most frameworks using GPUs for query processing presented so far
are not pairwise-comparable in performance: For some, no benchmark results are
presented; others focus on transactions rather than analytics; some use hardware
for which comparison is di�cult; and some alter the TPC-H schema significantly
(e.g. by denormalization). Most work surveyed in [4] falls into one of those categories
(and there’s GPU-DB [23], which uses a di�erent benchmark — SSB rather than
TPC-H). The design of these various frameworks is interesting to compare with,
however, as some of them exhibit desirable features missing in this work (and
vice-versa); unfortunately, space constraints preclude this.

A GPU-featuring processing framework which is close-to comparable is the
MonetDB-based Ocelot [6]: It was benchmarked with a “hot cache”, i.e. much of
the data already in GPU memory [6, §5.3]; with an older GPU (GeForce GTX 460);
and with a focus on portable implementation rather than maximum performance.
Still, the Ocelot on-GPU time of TPC-H queries 1, 4 and 21 is 200, 30 and 300
ms respectively (for SF1), compared to our 16.8, 4.7 and 9.6 ms. We believe this
factor of 7-30x in execution speed is mostly the result of Ocelot adhering closely
to MonetDB’s CPU-oriented execution plan on the GPU as well.

The few remaining frameworks, which are possible to compare against, were
executed on hosts DBMSs that were rather slow to begin with. The interesting
example in this category is the Red Fox framework [21]: Its Breß-et-al classification
is similar to ours; it has a similar IR–Compilation–Second-IR chain design, and
its motivation also goes beyond the execution of SQL query plans (see [21, §4.3];
again, we skip a more in-depth comparison of design features). Red Fox is grafted
onto LogicBlox[8] as its host DBMS; comparing [21, Table 3] with Table 3, we note
that MonetDB is 5.3-14.7x faster than the unmodified LogicBlox8. This seems to

8 LogicBlox figures normalized by 0.85 to account for HW di�erences.

be a foil for Red Fox: Despite its solid speedup over its reference (7x average), it
still only gets close to MonetDB speed, and is 5-12x slower than our framework
on the four queries. One can also get a rough notion of how the execution plans
di�er by comparing the breakdown of execution time by computational operation:
[21, Figure 10] compared to Figure 13 above.

Another example is Galactica [22]: Based on PostgreSQL, it also does not speed
up execution to Monet-level speed, and is an order-of-magnitude slower than our
framework (compare [22, §3.1.3] with Table 3 above).

Finally, a GPU-utilizing query processor named GPL (for “GPU Pipelining”)
has been described in the very-recently published [13] by Johns et alia. They take
up the challenge of execution in chunks (a.k.a. tiles, or tablets), a concept first
explored with Viriginian [2]. This reduces the size of materialized intermediary
results and the overhead of communicating them via global memory. GPL also
utilizes pipelining support in OpenCL 2.x, a theoretically promising approach. The
paper does not report results for any TPC-H query with which we had tested, except
Q9, and it does not make absolute results available for execution on a discrete GPU

— making a proper, explicit comparison di�cult. Still, the performance comparison
it makes vis-a-vis Ocelot [13, Figs. 21, 22] shows a speedup of up to 2.5x, and
typically under 1.5x. It thus seems to be the case that this new query processor is
still significantly slower than the one presented in this work (and typically slower
on an nVIDIA K40 than MonetDB on a typical dual-socket Xeon system).

6 Discussion and further performance enhancement

Our framework does not process queries quickly; and it is certainly not a good
measure of the potential for processing performance with a GPU. This much is
evident merely from observing how most of our execution time is spent idly waiting
for I/O over PCIe. Thus, instead of resolving the shortcoming of discrete GPUs our
work has merely masked it with performance improvements elsewhere. This is an
unintended and somewhat ironic outcome: During the initial phases of our work,
the picture was the exact opposite: 80%-90% of the time was being spent on GPU
Compute. As we were laboring on providing the GPU with a better-parallelizable
plan and data that is more easily accessible in parallel (as well as improving some of
naive kernel implementations), total Compute time decreased further and further,
eventually losing its dominance — so that squeezing it even more no would no longer
yield much benefit. This phenomenon was discussed in [23], with the metaphor of
a changing “balance of Yin and Yang”.

Having put much e�ort into suppressing the “Yang” (improving GPU Compute
time), three actions now come to mind for curbing the e�ects of the “Yin” (PCIe
transfer):
I/O-Compute overlap via mapped memory: GPUs o�er the feature of host-
device-mapped memory, which triggers PCIe transactions on memory reads.
Using these can allow computation on the GPU to begin immediately, with
data transferred on on-demand; this approach is taken in [23] (although it does
not present an I/O-Compute breakdown). It does have several drawbacks, how-

ever (less cache-friendly; PCIe transaction overhead; potential underuse of the
bus).

I/O-Compute overlap via ‘chunk-at-a-time’ execution: Several DBMSes
process data at the resolution of a column/table chunk rather than an operator-
at-a-time on entire columns. In the CPU world this is a key feature of Actian
Vector [24] (although more for the reason of fitting data in the CPU’s cache).
With regard to GPU-utilizing query processing frameworks, Virginian [4, 3] has
employed it, but a more in-depth exploration of its merit and a case for its sig-
nificance is the recent [13]. Considering our own results, even rough chunks of
size, say, 1MB-4MB should already cut most of the initial idle period of the
GPU waiting for data to arrive with nothing to work on. Chunk-at-a-time exe-
cution would also enable the use of chunk-level meta-data, potentially allowing
a query processor to filter-out entire chunks rather than sending them to the
GPU.
A refined variation of this approach is GPU pipelining, as in [13] (see Section 5).
While not yet available in CUDA, it could theoretically allow for avoiding not
only the initial idle time, but also much of the overhead inherent in manipulating
chunks.

Data compression: In most real-world scenarios column data has many reg-
ularities and correlations, lower e�ective domain etc. — making it very amenable
to compression; and this is true even for the somewhat artifical example of the
TPC-H. Also, it just so happens we have a mostly-idle ALU-rich computational
device to use for decompression on the receiving end. While the other two methods
are limited in benefit by the amount of Compute Time (100% overlap), compression
is limited the information inherent in the data and the GPU’s ability to decom-
press e�ectively. Of course, such computation will itself contend with actual query
operation application, so a di�erent balance will need to be struck.

A fourth option we could have listed is using bit weaving, transferring columns
one bit at a time; but we are skeptical of the utility in this approach, among other
reasons because most of its potential benefit is subsumed by compressing the data.

Another important challenge in evaluating GPU-accelerated query processors
is the scaling of bencmark schema. With only 1 GB of data overall, some queries
take as little as 3 ms or less of actual computation time — with results potentially
skewed by some minor ine�ciency here or there. A larger scale also forces the more
realistic setting of inability to hold all data in GPU memory, being limited on
discrete GPUs compared to main system memory. For our framework, implemen-
tation of either memory management would obviously allow scaling beyond the
equivalent of scale factor 10 for TPC-H queries, with no significant cost — even
with ‘operator-at-a-time’ execution. The ‘chunk-at-a-time’ approach, mentiond
above, automatically enables scaling to handle much larger benchmark data.

References
[1] Armbrust, M., Xin, R.S., Lian, C., Huai, Y., Liu, D., Bradley, J.K., Meng, X.,

Kaftan, T., Franklin, M.J., Ghodsi, A., Zaharia, M.: Spark SQL: Relational data
processing in spark. In: Proc. SIGMOD. pp. 1383–1394. SIGMOD ’15, ACM (2015)

[2] Bakkum, P., Chakradhar, S.: E�cient data management for GPU databases. NEC
Laboratories America, Princeton, NJ, Tech. Rep (2012)

[3] Bakkum, P., Chakradhar, S.: E�cient data management for GPU databases. In:
NEC Laboratories America, Princeton, NJ, Tech. Rep [2]

[4] Breß, S., Heimel, M., Siegmund, N., Bellatreche, L., Saake, G.: GPU-accelerated
database systems: Survey and open challenges. In: Proc. BigDataScience.
ACM/IEEE (2014)

[5] He, B., Lu, M., Yang, K., Fang, R., Govindaraju, N.K., Luo, Q., Sander, P.V.:
Relational query coprocessing on graphics processors. Trans. DB Sys. 34(4),
21:1–21:39 (Dec 2009)

[6] Heimel, M., Saecker, M., Pirk, H., Manegold, S., Markl, V.: Hardware-oblivious
parallelism for in-memory column-stores. In: Proc. VLDB. vol. 9, pp. 709–720 (2013)

[7] Kemper, A., Neumann, T., Garching, D.: HyPer: A hybrid OLTP&OLAP main
memory database system based on virtual memory snapshots. In: Proc. ICDE (2011)

[8] http://www.logicblox.com/
[9] Luitjens, J.: Faster parallel reductions on Kepler (2014),

http://devblogs.nvidia.com/parallelforall/faster-parallel-reductions-kepler/
[10] Manegold, S., Kersten, M., Boncz, P.: Database architecture evolution: Mammals

flourished long before dinosaurs became extinct. Proc. VLDB 2(2), 1648–1653 (2009)
[11] MonetDB webpage, http://www.monetdb.org
[12] Neumann, T.: E�ciently compiling e�cient query plans for modern hardware. Proc.

VLDB 4(9), 539–550 (June 2011)
[13] Paul, J., He, J., He, B.: GPL: A GPU-based pipelined query processing engine. In:

Proc. SIGMOD. ACM (2016)
[14] Power, J., Li, Y., Hill, M.D., Patel, J.M., Wood, D.A.: Toward GPUs being

mainstream in analytic processing: An initial argument using simple scan-aggregate
queries. In: Proc. DaMoN. p. 11. ACM (2015)

[15] Sidirourgos, L., Kersten, M.: Column imprints: a secondary index structure. In:
Proc. SIGMOD. pp. 893–904. ACM (2013)

[16] Sitaridi, E.A., Ross, K.A.: GPU-accelerated string matching for database
applications. J. VLDB pp. 1–22 (2015)

[17] Stonebraker, M., Hellerstein, J., Bailis, P.: Readings in Database Systems (the Red
Book). 5th edn. (2015), http://www.redbook.io/

[18] The CUB library, http://nvlabs.github.io/cub/
[19] https://www.monetdb.org/Documentation/Manuals/MonetDB/MALreference
[20] The TPC Council: TPC Benchmark H (rev 2.17.1) (2014), http://www.tpc.org/tpch
[21] Wu, H., Diamos, G., Sheard, T., Aref, M., Baxter, S., Garland, M., Yalamanchili,

S.: Red Fox: An execution environment for relational query processing on GPUs.
In: Proc. CGO. p. 44. ACM (2014)

[22] Yong, K.K., Karuppiah, E.K., See, S.: Galactica : A GPU parallelized database
accelerator. In: Proc. BigDataScience. ACM/IEEE (2014)

[23] Yuan, Y., Lee, R., Zhang, X.: The Yin and Yang of processing data warehousing
queries on GPU devices. Proc. VLDB 6(10), 817–828 (2013)

[24] Zukowski, M., Boncz, P.: Vectorwise: Beyond column stores. IEEE Data Engineering
Bulletin 35(1), 21–27 (2012)

	Overtaking CPU DBMSes with a GPU in Whole-Query Analytic Processing

