620 research outputs found

    A four-channel portable solar radiometer for measuring particulate and/or aerosol opacity and concentration of NO2 and SO2 in stack plumes

    Get PDF
    Solar absorption radiometry has been investigated as a method of measuring stackplume effluents. A simple and inexpensive instrument was constructed for observing the sun at four wavelengths: 800, 600, 400, and 310 nm. Higher wavelength channels measured the effect of the particulates and NO2, and an ultraviolet channel measured the contribution of SO2 to the attenuation. Stack-plume measurements of opacity and concentration of NO2 and SO2 were in basic agreement with in-stack measurements. The major limitation on the use of the radiometer is the requirement for an accessible viewing position which allows the sun-plume-observer relationship to be attained. It was concluded that the solar radiometer offers an inexpensive method for monitoring plume effluents when the viewing position is not restricted

    Spectral differences and temporal stability of phycoerythrin fluorescence in estuarine and coastal waters due to the domination of labile cryptophytes and stabile cyanobacteria

    Get PDF
    Laser fluorosensing and epifluorescence microscopy were used jointly to identify the origin of different spectral peaks of phycoerythrin in estuarine and coastal samples. The fluorescence of the samples was also examined as a function of the time elapsed after a water circulation system was turned on. Coastal samples were dominated by cyanobacteria and exhibited a constant phycoerythrin fluorescence with time. The phycoerythrin fluorescence of the Chesapeake Bay estuarine samples first increased strongly, reached a maximum, and then decreased to below the original level; these samples were dominated by cryptophytes which epifluorescence techniques revealed were being destroyed by the circulation system. A simple mathematical model was developed to describe the effects of cell disruption, the uncoupling of energy transfer between pigments, and the subsequent breakdown of the solubilized phycoerythrin

    Normal Ordering for Deformed Boson Operators and Operator-valued Deformed Stirling Numbers

    Full text link
    The normal ordering formulae for powers of the boson number operator n^\hat{n} are extended to deformed bosons. It is found that for the `M-type' deformed bosons, which satisfy aaqaa=1a a^{\dagger} - q a^{\dagger} a = 1, the extension involves a set of deformed Stirling numbers which replace the Stirling numbers occurring in the conventional case. On the other hand, the deformed Stirling numbers which have to be introduced in the case of the `P-type' deformed bosons, which satisfy aaqaa=qn^a a^{\dagger} - q a^{\dagger} a = q^{-\hat{n}}, are found to depend on the operator n^\hat{n}. This distinction between the two types of deformed bosons is in harmony with earlier observations made in the context of a study of the extended Campbell-Baker-Hausdorff formula.Comment: 14 pages, Latex fil

    Boundary effects on the local density of states of one-dimensional Mott insulators and charge density wave states

    Full text link
    We determine the local density of states (LDOS) for spin-gapped one-dimensional charge density wave (CDW) states and Mott insulators in the presence of a hard-wall boundary. We calculate the boundary contribution to the single-particle Green function in the low-energy limit using field theory techniques and analyze it in terms of its Fourier transform in both time and space. The boundary LDOS in the CDW case exhibits a singularity at momentum 2kF, which is indicative of the pinning of the CDW order at the impurity. We further observe several dispersing features at frequencies above the spin gap, which provide a characteristic signature of spin-charge separation. This demonstrates that the boundary LDOS can be used to infer properties of the underlying bulk system. In presence of a boundary magnetic field mid-gap states localized at the boundary emerge. We investigate the signature of such bound states in the LDOS. We discuss implications of our results on STM experiments on quasi-1D systems such as two-leg ladder materials like Sr14Cu24O41. By exchanging the roles of charge and spin sectors, all our results directly carry over to the case of one-dimensional Mott insulators.Comment: 28 page

    Energy of Isolated Systems at Retarded Times as the Null Limit of Quasilocal Energy

    Get PDF
    We define the energy of a perfectly isolated system at a given retarded time as the suitable null limit of the quasilocal energy EE. The result coincides with the Bondi-Sachs mass. Our EE is the lapse-unity shift-zero boundary value of the gravitational Hamiltonian appropriate for the partial system Σ\Sigma contained within a finite topologically spherical boundary B=ΣB = \partial \Sigma. Moreover, we show that with an arbitrary lapse and zero shift the same null limit of the Hamiltonian defines a physically meaningful element in the space dual to supertranslations. This result is specialized to yield an expression for the full Bondi-Sachs four-momentum in terms of Hamiltonian values.Comment: REVTEX, 16 pages, 1 figur

    Tools for Deconstructing Gauge Theories in AdS5

    Get PDF
    We employ analytical methods to study deconstruction of 5D gauge theories in the AdS5 background. We demonstrate that using the so-called q-Bessel functions allows a quantitative analysis of the deconstructed setup. Our study clarifies the relation of deconstruction with 5D warped theories.Comment: 30 pages; v2: several refinements, references adde

    On the Two q-Analogue Logarithmic Functions

    Full text link
    There is a simple, multi-sheet Riemann surface associated with e_q(z)'s inverse function ln_q(w) for 0< q < 1. A principal sheet for ln_q(w) can be defined. However, the topology of the Riemann surface for ln_q(w) changes each time "q" increases above the collision point of a pair of the turning points of e_q(x). There is also a power series representation for ln_q(1+w). An infinite-product representation for e_q(z) is used to obtain the ordinary natural logarithm ln{e_q(z)} and the values of sum rules for the zeros "z_i" of e_q(z). For |z|<|z_1|, e_q(z)=exp{b(z)} where b(z) is a simple, explicit power series in terms of values of these sum rules. The values of the sum rules for the q-trigonometric functions, sin_q(z) and cos_q(z), are q-deformations of the usual Bernoulli numbers.Comment: This is the final version to appear in J.Phys.A: Math. & General. Some explict formulas added, and to update the reference

    The Universal Cut Function and Type II Metrics

    Get PDF
    In analogy with classical electromagnetic theory, where one determines the total charge and both electric and magnetic multipole moments of a source from certain surface integrals of the asymptotic (or far) fields, it has been known for many years - from the work of Hermann Bondi - that energy and momentum of gravitational sources could be determined by similar integrals of the asymptotic Weyl tensor. Recently we observed that there were certain overlooked structures, {defined at future null infinity,} that allowed one to determine (or define) further properties of both electromagnetic and gravitating sources. These structures, families of {complex} `slices' or `cuts' of Penrose's null infinity, are referred to as Universal Cut Functions, (UCF). In particular, one can define from these structures a (complex) center of mass (and center of charge) and its equations of motion - with rather surprising consequences. It appears as if these asymptotic structures contain in their imaginary part, a well defined total spin-angular momentum of the source. We apply these ideas to the type II algebraically special metrics, both twisting and twist-free.Comment: 32 page

    Modular application of an Integration by Fractional Expansion (IBFE) method to multiloop Feynman diagrams

    Full text link
    We present an alternative technique for evaluating multiloop Feynman diagrams, using the integration by fractional expansion method. Here we consider generic diagrams that contain propagators with radiative corrections which topologically correspond to recursive constructions of bubble type diagrams. The main idea is to reduce these subgraphs, replacing them by their equivalent multiregion expansion. One of the main advantages of this integration technique is that it allows to reduce massive cases with the same degree of difficulty as in the massless case.Comment: 38 pages, 46 figures, 4 table

    Separation of variables for A2 Ruijsenaars model and new integral representation for A2 Macdonald polynomials

    Full text link
    Using the Baker-Akhiezer function technique we construct a separation of variables for the classical trigonometric 3-particle Ruijsenaars model (relativistic generalization of Calogero-Moser-Sutherland model). In the quantum case, an integral operator M is constructed from the Askey-Wilson contour integral. The operator M transforms the eigenfunctions of the commuting Hamiltonians (Macdonald polynomials for the root sytem A2) into the factorized form S(y1)S(y2) where S(y) is a Laurent polynomial of one variable expressed in terms of the 3phi2(y) basic hypergeometric series. The inversion of M produces a new integral representation for the A2 Macdonald polynomials. We also present some results and conjectures for general n-particle case.Comment: 31 pages, latex, no figures, Proposition 12 correcte
    corecore