656 research outputs found

    Dynamic radiation force of acoustic waves on solid elastic spheres

    Get PDF
    The present study concerns the dynamic radiation force on solid elastic spheres exerted by a plane wave with two frequencies (bichromatic wave) considering the nonlinearity of the fluid. Our approach is based on solving the wave scattering for the sphere in the quasilinear approximation within the preshock wave range. The dynamic radiation force is then obtained by integrating the component of the momentum flux tensor at the difference of the primary frequencies over the boundary of the sphere. Results reveal that effects of the nonlinearity of the fluid plays a major role in dynamic radiation force leading it to a parametric amplification regime. The developed theory is used to calculate the dynamic radiation force on three different solid spheres (aluminium, silver, and tungsten). Resonances are observed in the spectrum of the force on the spheres. They have larger amplitude and better shape than resonances present in static radiation force.Comment: 9 pages, 4 figures, to appear in Physical Review

    Measuring the Performance of Underplatform Dampers for Turbine Blades by Rotating Laser Doppler Vibrometer

    Get PDF
    Underplatform friction dampers are commonly used to control the vibration level of turbine blades in order to prevent high-cycle fatigue failures. Experimental validation of highly non-linear response predictions obtained from FEM bladed disk models incorporating underplatform dampers models, has proved to be very difficult so as the assessment of the performance of a chosen design. In this paper, the effect of wedgeshaped underplatform dampers on the dynamics of a simple bladed disk under rotating conditions is measured and the effect of the excitation level on the UPDs performances is investigated at different number of the engine order excitation nearby resonance frequencies of the 1st blade bending modes of the system. The measurements are performed with an improved configuration of a rotating test rig, designed with a noncontact magnetic excitation and a non-contact rotating SLDV measurement syste

    A pilot evaluation of the practicality of the surrey virtual rehabilitation system: Perspectives from end-users

    Get PDF
    The Surrey Virtual Rehabilitation System (SVRS) was developed for clinical use in physiotherapy for children with cerebral palsy (CP). The overall aim of this work was to evaluate the practicality of the SVRS for three simple lower extremity exercises. Two children with CP, two clinical engineering trainees and a physiotherapist performed the tests whilst parents and a paediatric physiotherapist observed the exercise sessions. The feedback collected during an open-discussion and the descriptive analysis of responses to 15 closed-ended questions suggest that the participants were satisfied with the practicality of the SVRS. Outcome measures derived from data collected during the sessions indicate that the SVRS may provide clinically relevant feedback on the performance of patients for themselves and their treating clinicians. In conclusion, the SVRS appears practical for rehabilitation purposes and is worthy of further evaluation and development. Copyright © 2014 Inderscience Enterprises Ltd

    Pipeline network features and leak detection by cross-correlation analysis of reflected waves

    Get PDF
    This paper describes progress on a new technique to detect pipeline features and leaks using signal processing of a pressure wave measurement. Previous work (by the present authors) has shown that the analysis of pressure wave reflections in fluid pipe networks can be used to identify specific pipeline features such as open ends, closed ends, valves, junctions, and certain types of bends. It was demonstrated that by using an extension of cross-correlation analysis, the identification of features can be achieved using fewer sensors than are traditionally employed. The key to the effectiveness of the technique lies in the artificial generation of pressure waves using a solenoid valve, rather than relying upon natural sources of fluid excitation. This paper uses an enhanced signal processing technique to improve the detection of leaks. It is shown experimentally that features and leaks can be detected around a sharp bend and up to seven reflections from features/ leaks can be detected, by which time the wave has traveled over 95 m. The testing determined the position of a leak to within an accuracy of 5%, even when the location of the reflection from a leak is itself dispersed over a certain distance and, therefore, does not cause an exact reflection of the wave

    An Investigation of Complex Mode Shapes

    Get PDF
    This paper presents an investigation of complex mode shape analysis caused by non-linear damping. Nowadays, most academics are accustomed to complex mode shapes, which are a characteristic of most axisymmetric structures. The topic was deeply investigated during the 1980s, sparking the sharpest debates about their physical existence or not. However, after nearly three decades, one question still stands, do we know all about complex mode shapes? This paper takes the dust off this topic again and explores how complex eigenvectors arise when the percentage frequency separation between two mode shapes is the same order of magnitude as the percentage damping. The difference between the past and present investigations relates to the non-linear damping that might arise from joint dynamics under various vibration amplitudes. Hence, the new research question is about the investigation of amplitude-dependent damping on the modal complexity. Why bother? There are several engineering applications in both space and aerospace where axisymmetric structures and joint dynamics can impair the numerical analysis that is currently performed. This paper does not offer any solutions but does expand the research on an unsolved challenge by identifying the questions posed.</p

    An alternative method to the identification of the modal damping factor based on the dissipated energy

    Get PDF
    The identification of the modal parameters from frequency response functions is a subject that is not new. However, the starting point often comes from the equations that govern the dynamic motion. In this paper, a novel approach is shown, resulting from an analysis that starts on the dissipated energy per cycle of vibration. Numerical and experimental examples were used in order to assess the effectiveness of the proposed method. It was shown that, for lightly damped systems with conveniently spaced modes, it produced quite accurate results when compared to those obtained from the method of the inverse. The technique also proved to be simple enough to be used for quick estimates of the modal damping factors. Finally, this paper is a contribution to modal analysis and identification methods, as the developed technique has never been proposed before

    Keeping patients with epilepsy safe: a surmountable challenge?

    Get PDF
    This quality improvement project was inspired as an answer to a problem that intellectual disability teams have been struggling to manage whilst caring for people with epilepsy (PWE). The issue was that despite guidance to discuss the possibility of sudden unexpected death in epilepsy (SUDEP) be discussed with a newly diagnosed PWE this is rarely done. Additionally when, how, and what to discuss about SUDEP and reduce its risk is arbitrary, non-person centred, and with no structured evidence. Prior to initiating changes a discussion of SUDEP was recorded in just 10% of PWE. We introduced a check-list to help identify risk factors for SUDEP. We then modified the check-list, and then used it via telehealth, a way of contacting patients and their carers over the phone using the check-list approach. Following interventions, discussions of SUDEP are now recorded in 80% of PWE. Feedback from patients, carers and primary and secondary care professionals has been positive. We are now developing an app so that patients and carers can monitor their own risk factors, thus empowering them and increasing their knowledge and awareness of SUDEP

    Damage detection of shear connectors in bridge structures with transmissibility in frequency domain

    Get PDF
    Shear connectors are generally used to link the slab and girder together in slab-on-girder bridge structures. Damage of shear connectors in such structures will result in shear slippage between the slab and girder, which significantly reduces the load-carrying capacity of bridges. A damage detection approach based on transmissibility in frequency domain is proposed in this paper to identify the damage of shear connectors in slab-on-girder bridge structures with or without reference data from the undamaged structure. The transmissibility, which is an inherent system characteristic, indicates the relationship between two sets of response vectors in frequency domain. Measured input force and acceleration responses from hammer tests are analyzed to obtain the frequency response functions at the slab and girder sensor locations by the experimental modal analysis. The transmissibility matrix that relates the slab response to the girder response is then derived. By comparing the transmissibility vectors in undamaged and damaged states, the damage level of shear connectors can be identified. When the measurement data from the undamaged structure are not available, a study with only the measured response data in the damaged state for the condition assessment of shear connectors is also conducted. Numerical and experimental studies on damage detection of shear connectors linking a concrete slab to two steel girders are conducted to validate the accuracy and efficiency of the proposed approach. The results demonstrate that the proposed method can be used to identify shear connector damages accurately and efficiently. The proposed method is also applied to the condition evaluation of shear connectors in a real composite bridge with in-field testing data
    corecore