3,867 research outputs found

    Finite element analysis applied to redesign of submerged entry nozzles for steelmaking

    Get PDF
    The production of steel by continuous casting is facilitated by the use of refractory hollow-ware components. A critical component in this process is the submerged entry nozzle (SEN). The normal operating conditions of the SEN are arduous, involving large temperature gradients and exposure to mechanical forces arising from the flow of molten steel; experimental development of the components is challenging in so hazardous an environment. The effects of the thermal stress conditions in relation to a well-tried design were therefore simulated using a finite element analysis approach. It was concluded from analyses that failures of the type being experienced are caused by the large temperature gradient within the nozzle. The analyses pointed towards a supported shoulder area of the nozzle being most vulnerable to failure and practical in-service experience confirmed this. As a direct consequence of the investigation, design modifications, incorporating changes to both the internal geometry and to the nature of the intermediate support material, were implemented, thereby substantially reducing the stresses within the Al2O3/graphite ceramic liner. Industrial trials of this modified design established that the component reliability would be significantly improved and the design has now been implemented in series production

    An Informal Analysis of Career and Technical Student Organization Competitive Event Competencies via Kolb’s Experiential Learning Theory

    Get PDF
    In an effort to provide Career and Technical Student Organization (CTSO) advisors with additional insight on enhancing the educational experience for students, this paper examined the national contest competencies of the Health Occupations Society of America (HOSA) Veterinary Assisting Career Development Event, the national FFA Organization Floriculture Career Development Event and the SkillsUSA Automotive Service Technology Career Development Event to determine if potential exists for a holistic approach to competition preparation via the alignment with the four modes of Kolb’s Experiential Learning Cycle. The results indicated that preparation for competitive events in each of the respective CTSOs lend themselves to using Kolb’s model as a method of preparing students for these competitions

    A similarity hypothesis for the two-point correlation tensor in a temporally evolving plane wake

    Get PDF
    The analysis demonstrated that the governing equations for the two-point velocity correlation tensor in the temporally evolving wake admit similarity solutions, which include the similarity solutions for the single-point moment as a special case. The resulting equations for the similarity solutions include two constants, beta and Re(sub sigma), that are ratios of three characteristic time scales of processes in the flow: a viscous time scale, a time scale characteristic of the spread rate of the flow, and a characteristic time scale of the mean strain rate. The values of these ratios depend on the initial conditions of the flow and are most likely measures of the coherent structures in the initial conditions. The occurrences of these constants in the governing equations for the similarity solutions indicates that these solutions, in general, will only be the same for two flows if these two constants are equal (and hence the coherent structures in the flows are related). The comparisons between the predictions of the similarity hypothesis and the data presented here and elsewhere indicate that the similarity solutions for the two-point correlation tensors provide a good approximation of the measures of those motions that are not significantly affected by the boundary conditions caused by the finite extent of real flows. Thus, the two-point similarity hypothesis provides a useful tool for both numerical and physical experimentalist that can be used to examine how the finite extent of real flows affect the evolution of the different scales of motion in the flow

    Effect of pancreatic and/or renal transplantation on diabetic autonomic neuropathy

    Get PDF
    Thirty-nine Type 1 (insulin-dependent) diabetic patients were studied prospectively after simultaneous pancreas and kidney (n=26) and kidney grafting alone (n=13) by measuring heart rate variation during various manoeuvers and answering a standardized questionnaire every 6 to 12 months post-transplant. While age, duration of diabetes, and serum creatinine (168.1Âą35.4 vs 132.7Âą17.7 mgrmol/l) were comparable, haemoglobin A1 levels were significantly lower (6.6Âą0.2 vs 8.5Âą0.3%; p<0.01) and the mean observation time longer (35Âą2 vs 25Âą3 months; p<0.05) in the pancreas recipients when compared with kidney transplanted patients. Heart rate variation during deep breathing, lying/standing and Valsalva manoeuver were very similar in both groups initially and did not improve during follow-up. However, there was a significant reduction in heart rate in the pancreas recipient group. Autonomic symptoms of the gastrointestinal and thermoregulatory system improved more in the pancreas grafted subjects, while hypoglycaemia unawareness deteriorated in the kidney recipients. This study suggests that long-term normoglycaemia by successful pancreatic grafting is able to halt the progression of autonomic dysfunction

    Numerical Analysis for the Consumer

    Get PDF

    Nano-porosity in GaSb induced by swift heavy ion irradiation

    Get PDF
    Nano-porous structures form in GaSb after ion irradiation with 185 MeV Au ions. The porous layer formation is governed by the dominant electronic energy loss at this energy regime. The porous layer morphology differs significantly from that previously reported for low-energy, ion-irradiated GaSb. Prior to the onset of porosity, positron annihilation lifetime spectroscopy indicates the formation of small vacancy clusters in single ion impacts, while transmission electron microscopy reveals fragmentation of the GaSb into nanocrystallites embedded in an amorphous matrix. Following this fragmentation process, macroscopic porosity forms, presumably within the amorphous phase.The authors thank the Australian Research Council for support and the staff at the ANU Heavy Ion Accelerator Facility for their continued technical assistance. R.C.E. acknowledges the support from the Office of Basic Energy Sciences of the U.S. DOE (Grant No. DE-FG02-97ER45656)

    Brayton-cycle radioisotope heat source design study. Phase I - /Conceptual design/ report

    Get PDF
    Conceptual designs for radioisotope heat source systems to provide 25 kW thermal power to Brayton cycle power conversion system for space application

    The surface wave environment in the GATE B/C Scale - Phase III

    Get PDF
    The surface wave environment in the GATE B/C scale is described from wave measurements made from buoys and aircraft during Phase III (September 1974). Particular emphasis is given to the wave measurements made from the pitch-roll buoy deployed in the B-scale array from the ship Gilliss and a similar buoy deployed in the C-scale array from Quadra. Reduction of the pitch-roll buoy measurements provided estimates of the one-dimensional wave spectrum as well as of the mean direction and spread of wave energy as a function of frequency. The data clearly revealed the importance of external forcing on the wave climate in GATE. Most of the wave energy present in the GATE areas was found to be swell imported from the trade wind circulations of both hemispheres and from an intense extratropical cyclone which crossed the North Atlantic at high latitudes early in Phase III. Locally generated waves were clearly evident in the wave spectra, but their energy level way have been modulated significantly by the low-frequency swell. The GATE wave data set can provide a powerful test of contemporary numerical wave-prediction models. The present study defines the, attributes which are required of such models for meaningful application to the GATE needs

    Knowledge of Objective 'Oughts': Monotonicity and the New Miners Puzzle

    Get PDF
    In the classic Miners case, an agent subjectively ought to do what they know is objectively wrong. This case shows that the subjective and objective ‘oughts’ are somewhat independent. But there remains a powerful intuition that the guidance of objective ‘oughts’ is more authoritative—so long as we know what they tell us. We argue that this intuition must be given up in light of a monotonicity principle, which undercuts the rationale for saying that objective ‘oughts’ are an authoritative guide for agents and advisors

    A direct comparison of the KB™ Basecaller and phred for identifying the bases from DNA sequencing using chain termination chemistry

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Relatively recently, the software KB™ Basecaller has replaced <it>phred </it>for identifying the bases from raw sequence data in DNA sequencing employing dideoxy chemistry. We have measured quantitatively the consequences of that change.</p> <p>Results</p> <p>The high quality sequence segment of reads derived from the KB™ Basecaller were, on average, 30-to-50 bases longer than reads derived from <it>phred</it>. However, microbe identification appeared to have been unaffected by the change in software.</p> <p>Conclusions</p> <p>We have demonstrated a modest, but statistically significant, superiority in high quality read length of the KB™ Basecaller compared to <it>phred</it>. We found no statistically significant difference between the numbers of microbial species identified from the sequence data.</p
    • …
    corecore