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A similarity hypothesis for the
two-point correlation tensor in a
temporally evolving plane wake

By D. W. Ewing 1, W. K. George2_ R. D. Moser 3, AND M. M. Rogers 4

1. Motivation and objectives

It has long been known that the equations that govern the evolution of the single-

point moments, such as the mean velocity or the turbulent Reynolds stresses, admit

similarity solutions for many of the basic shear flows (e.g. George 1989 or Tennekes

and Lumley 1972). In this approach, it is argued that the flow evolves such that

all of the terms in the governing equations make the the same relative contribution

so the flow reaches an 'equilibrium' or similarity state. In many cases the initial

conditions of the flow are inconsistent with the hypothesized similarity solutions so

these solutions are, at most, an approximation of the flows asymptotic state. How-

ever, the agreement between the predictions of the theory and experimental data

(e.g., Wygnanski et al. 1989) suggests that flows do approach such an asymptotic
state.

Traditionally (e.g., Tennekes and Lumley 1972), it was argued that this asymp-

totic state is universal for all flows of a particular type (e.g., all plane wakes).

However, this argument is not consistent with the measurements in the far field of

plane wakes reported by Wygnanski et al. (1989), who found that the similarity

profiles of the normal Reynolds stresses (particularly the streamwise component)

differed for different types of wake generators. George (1989) argued that this oc-

curred because the governing equation for the similarity profile of the turbulent

kinetic energy contained a constant that depended on the growth rate of the flow.

Consequently, George (1989) concluded that the similarity profiles for the normal

stresses would not be universal unless the growth rates of all wakes were the same,

which was not the case for the wakes studied by Wygnanski et al. (1986). (A simi-

lar conclusion was reached from a later analysis of the governing equations for the

individual normal stresses; e.g., George 1994 or Ewing and George 1994.) George

(1989) attributed the differences in the growth rates of the wakes (and hence the

asymptotic states) to differences in the coherent structures produced by the bodies

generating the wake.
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It is now widely recognized that coherent structures play an integral role in many

of the processes that determine the growth rate of a turbulent flow, including the

entrainment of irrotational flow and the gross mixing of the fluid across the layer.

A question that has not yet been resolved is whether the structures in the flow

themselves (or more properly the coherent structures and the probability density

functions describing their occurrences) approach an 'equilibrium' or similarity state

when the single-point moments measured in the flow agree with the predictions

of the similarity hypothesis. That is, can all of the statistical measures of the

structures (the single-point moments being the simplest) at different points in a

flow's evolution be related by a similarity transformation.

The primary objective of this research is to examine whether the governing equa-

tions for more complex statistical measures of the structures in the temporally

evolving plane wake admit similarity solutions. (In the initial stage of this research

it was established that the governing equations for the mean momentum and the

Reynolds stresses admit similarity solutions, v. Moser et al. 1995). The two-point

velocity correlation tensor was chosen because it contains more information about

the turbulent structure than the single-point moments and it is often used in at-

tempts to educe coherent structures from the flow (e.g., Grant 1958 or Payne and

Lumley 1967). There have been few previous attempts to demonstrate that the

governing equations for these two-point correlations admit similarity solutions in

non-homogeneous flows. Ewing and George (1994) and Ewing (1995) demonstrated

that the governing equations for the two-point velocity correlation tensor in the far

fields of the spatially evolving axisymmetric and plane jets admit similarity solu-

tions. However, in both of these cases the predictions of the similarity hypotheses

were not tested using experimental data, so it was not determined if these similarity

solutions are accurate descriptions of real shear flows. This question is addressed

in this research using data from Direct Numerical Simulations of the temporally

evolving wake computed by Moser and Rogers (1994).

2. Accomplishments

_.I Theoretical analysis

In the temporally evolving wake, shown in Fig. 1, a momentum deficit spreads

in one non-homogeneous direction, x2, as the flow evolves in time. The other

two directions, including the direction of the mean flow, xl, are homogeneous.

Consequently, the governing equations for the two-point velocity correlations in

this flow can be written as
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FIGURE 1. Geometry of the temporally evolving wake
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where q = Xl - x l, 7 = x3 - x_, U1 is the mean velocity in the xl-direction, and ui

are the fluctuating velocity components in the xi directions. In these equations, the

primed variables are evaluated at one arbitrary point in space while the unprimed

variables are evaluated at a second arbitrary point. The two-point velocity corre-

lations must also satisfy initial conditions and a number of boundary conditions;

i.e.,

lim uiu_ = 0, (2)
z2,x_,g,7--,-F_

assuming the turbulence in the free stream is negligible.

Following the approach outlined by George (1989), it is hypothesized that the

governing equations for the two-point correlation tensor admit similarity solutions

given by

where

ui(za, xz, x3, t)u_(z], x_, x'3, t) = Q")(t)q,,j(_, rl, rl', _, *),

p(xa, x2, xz, t)u_(x_,x2,x3; ' t) = P_J(t)plj(_, rl, rl', _, *),

p'(z'_,z'_,x'_,t)_(_, _, z_, t) _, 2 ,= P_ (t)Pi,(_,r/,r/,¢',*),

u_,uiu_ = T_i'J(t)tt_i,j(_,rh rl',¢, *),

, , = T;'kJ(t)tt_,kj(_,rt, rl',_,.),UiUkU j

(3a)

(3b)

(3c)

(3d)

(Ze)

zl - z_ x2 , x'_ "r x3 - z_
-8_(t)- 3,(t) ' 0= 6--_' r/ =6--_, _- 63(t)- 63(t) ' (3f)

and the * in Eqs. 3a -3e indicate that the solutions may depend on the source

conditions of the flow. At this point the length scales _1 and _3 are arbitrary.
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The allowable choices for these scales are determined by examining the equations

of motion. The length scale used to scale the z2 is equal to the scale used in the

single-point analysis, 6(t) oc (t -to) 1/_ (Moser et al. 1995), since the similarity

solutions for the single- mad two-point correlations must be consistent in the limit

when the separation distance between the two points is zero. Here, to is the location

of the virtual origin of the wake.

Substituting these hypothesized solutions for the two point correlations and the

similarity solution for the mean velocity given by (Moser et al. 1995)

v, oo- _,(_2, t) = v,(t)I(o) (4)

into Eq. 1 yields

[,,_<.'1r_.',,,,],0<,,..,r,_'.-'<,,1,o) {0,..,,,,310..,,...,(o

[U,(t)Q i'j ] Oqi,j 1 ([P]J] Op,½6 rP_'] OPT,.+ t <_, {.f(.')- s(.)} 0--2-- -; t.l <_:J_ "- t '_,J "-_-OJl

+ -_.+ _ ,_+

-t '_' J 0e +L,5, j 0_

[_;'l0_l=_r_l OPT "_

-L,,J o_+ --+ [_1 ','_'''+[_] _',_';'L_,] 0¢ "'1_=,, a,},_:,.,'

(ro,,,lo_ro',.,1,,,to',.,1o._ro,..,lo_)
where the time-dependent portion of each term is contained in square brackets.

It is possible to remove the time dependence from these equations if the time-
dependent portion of the all terms in each equation are proportional, leaving a

set of equations for the similarity solutions in terms of the similarity variables and

the constants whose values depend on the ratios of the time-dependent terms. In

this case, the similarity solutions again represent an 'equilibrium' solution for the

governing equations since all of the terms make the same relative contribution as
the flow evolves.

It is straightforward to demonstrate that the time dependent portions of the four

viscous terms in Eq. 5 are only proportional if

_, o__ o<6_o<(t - to)". (6)

This implies that all three length scales must have the same virtual origin.
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Further, the time-dependent portions of the convective and the unsteady terms

in Eq. 5 are only proportional to the time-dependent portions of these viscous terms
if

1

and

These constraints are satisfied if the three time scales flUs (a characteristic time

scale of the mean strain rate), _2/v (a viscous time scale), and (1/f ddi/dt) -1 (a
charteristic time scale of the spreading of the flow) are proportional. Thus, the ratio

of these time scales are constant; i.e.,

1 d(5

- U. dt (x const (8a)

and
U,6

Re6 = _ _ const, (8b)
v

which are the constraints derived in the analysis of the single-point equations.
The constraint that the Reynolds number is a constant is a gratifying result since

a single length scale was used to define each of the similarity coordinates in Eq. 3f.

Thus, it was implicitly assumed that all of the physically relevant length scales in the
flow grow in proportion as the flow evolves; an assumption that is generally thought

to be valid in a constant-Reynolds-number flow (Batchelor 1953). The functional

form of the solutions will, of course, depend on the ratios of the physically relevant

length scales (or the Reynolds number).
The constant _ that appears in the equations is analogous to the constant that

George (1989) found in the governing equation for the turbulent kinetic energy in

the spatially evolving wake. It is very likely that the value of this ratio depends

on the coherent structures in the flow, and it is through this constant that their
influence is incorporated into the equations for the similarity solutions.

The time-dependent portions of the rest of the terms in Eq. 5 are proportional if

P_' o¢ UoQ i'k, P;J o¢ U_Q k,j, (9a)

and

T_ ''j _ T_ 'kj o¢ UsQ ''j. (9b)

These expressions must be satisfied for any choice of k. The choice for Qi,j is not

uniquely determined from Eq. 5; however, Qi,J is not arbitrary since the similarity

solution for the two-point velocity correlation tensor must be consistent with the

similarity solution derived for the single-point moments (Moser et al. 1995). Thus,
it follows that

Q ,i (10)
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Of course, these constants of proportionality may be functions of 3 or Res.

Thus, the governing equations for the two-point velocity correlation tensor in the

temporally evolving wake admit similarity solutions, of which the similarity solution

for the single-point Reynolds stresses are a special case. It is straightforward to

demonstrate that the governing equations for the similarity solutions include the

constants Re6 and 3. Thus, in general, the similarity solutions are functions of these

two ratios whose values depend on the source conditions of the flow. In many flows,

the initial conditions are not consistent with the hypothesized similarity solution so

these solutions are, at most, an approximation of the asymptotic state of the flow

(as with the single-point similarity solutions).

_._ Implications of the similarity hypothesis

When a similarity solution exists for the two-point velocity tensor, other statis-

tical measures that can be determined directly from this two-point correlation also

have similarity solutions. In many cases, these results provide useful predictions to

compare with data in order to test the similarity hypothesis.

For example, when a similarity solution exists for the two-point velocity correla-

tion tensor, the one-dimensional spectra in the xx-direction given by

, 1 /_ x '
oo

(where R, 0 -- uiu'j) can be written as

FJ (kl,.2, xl, = [Q ,j6] (11a)

where the similarity solution for the one-dimensional spectra is given by

- - 1 /':¢ -

= ]_ (11c)

and ]q is the given by

kl = kl_. (llb)

A similar relationship can be derived for the one-dimensional spectra in the xa-

direction. Thus, when a similarity solution exists for the two-point velocity correla-

tion tensor, the one-dimensional spectra of the field maintain the same shape while

continuously shifting downward and to lower wavenumbers as the flow spreads.

It is also straightforward to demonstrate that many of the classically defined

turbulent length scales are proportional to the similarity length scale. For example,

the Taylor microscales given by

{ () 1}1/2(12)
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can be written as (Ewing 1995)

= (13)

It is also straightforward to show that the integral length scales and the Kolmogorov

length scale are proportion to the similarity length scale (Ewing 1995).

A number of other interesting implications of the two-point similarity hypothe-

sis, such as similarity solutions for the moments related to the two-point velocity-

gradient correlation tensor (e.g., the two-point vorticity correlation or the dissipa-

tion of the turbulent kinetic energy in the flow), are discussed in Ewing (1995) and

Ewing et al. (1995).

2.3 Comparison with simulation data

Although the previous analysis demonstrated that the hypothesized similarity

solutions are consistent with the equations of motion, this does not ensure that these

solutions are an accurate description of real flows. In this case the predictions of

the similarity hypothesis for the two-point velocity correlation tensor are compared

to the data from two Direct Numerical Simulations of the temporally evolving wake

computed by Moser and Rogers (1994). These simulations were carried out in finite

boxes with periodic boundary conditions in the homogeneous directions in contrast

to the theory, which was developed for a wake in an infinite domain. Consequently,

the theory cannot exactly approximate the flow in these simulations. However, it is

generally argued that the evolution of the scales of motion that are 'much' smaller

than the dimension of the boxes in the periodic directions should be similar to the

evolution of those in an infinite wake. Thus, a comparison between the predictions

of the similarity hypothesis and the data from the simulations is essentially a test

of both the similarity hypothesis and this idea. Agreement between the predictions

of the theory and the data lends support to both. (Experimentalists experience the

very same problem when data from finite experimental rigs, such as wind tunnels,

are used to test hypotheses developed for infinite flow; e.9. , George and Gibson

1992).

The initial conditions for the wake simulations were generated using two realiza-

tions from a turbulent boundary layer simulation yielding a wake with a Reynolds

number, given by
UF-o ( 1 - Vloo)dz2

Read = , (14)
u

of 2000. In the first (unforced) wake simulation the base initial conditions were

used to initiate the flow while in the second (forced) wake simulation the ul and

u2 velocity components of the spanwise two-dimensional modes were amplified by

a factor of 5. These simulations are computed in periodic boxes of length 50ad in

the xl-direction and 12.5_d in the xa-direction, where _d is the initial displacement

thickness of the wake. Moser and Rogers (1994) found that the data from both

simulations were approximately in agreement with the predictions of the similarity

hypothesis for a period of the flow's evolution. For example, it is evident from

Figs. 2a and 2b that the Reynolds number of both flows is approximately constant
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FIGURE 2. Evolution of the Reynolds number and similarity length scale: -- :

unforced wake simulation; .... : forced wake simulation; o : location of points

used to examine the two-point similarity hypothesis.

and the square of the similarity length scales in the flows grow approximately lin-

early, as predicted in the similarity analysis, for a significant time period. The

two-point similarity hypothesis is tested using data from four points in this range,

indicated by the diamonds in Figs. 2a and 2b.

The unscaled one-dimensional spectra F_I and F_2 at the centerline of the two

wakes (spatially averaged in the xa-direction) are illustrated in Figs. 3a and 3b.

The spectra exhibit peaks in the low-wavenumber region that are inconsistent with

the similarity hypothesis since they occur at the same wavenumber in physical vari-

ables. However, it is not anticipated that the similarity hypothesis should collapse

the spectra in this region because it is likely that these motions are affected by

the periodic boundary conditions or, conversely, the coarse discretization of wave

space at these scales. In contrast, the spectra in the high-wavenumber region shift

downward and to the left as the flow evolves, in agreement with the predictions of

the similarity hypothesis. The amplitude of the spectra in this high-wavenumber

region differ by a factor of approximately 3 - 4 so they should provide a good test

of the similarity hypothesis.

The scaled one-dimensional spectra Flll at the centerline and the half-deficit

point, q = 0.5, in the unforced wake are illustrated in Fig. 4, while the scaled

one-dimensional spectra F_2 at the same points in the forced wake simulation are

illustrated in Fig. 5. In both of these figures the data from the half-deficit point

in the wake are shifted up by a order of magnitude. Overall there is excellent col-

lapse of the data for the region where 1¢1 _ 15Af¢], indicating that the statistical

measures of all but the largest motions evolve as predicted by the similarity hypoth-

esis. There is some discrepancy between the predictions and the data at the largest

wavenumbers; however, these variations occur because the effective resolution of the

simulations varies as the flow evolves (Ewing 1995). The one-dimensional spectra

of the correlations in the x3-direction (Ewing 1995) exhibit better collapse than the
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FIGURE 3. Unsealed one-dimensional spectra in (a) the unforced wake, (b) the

forced wake: -- : F_l , .... : F_2. In (a) 6/6d is equal to: 3.494 o, 4.008 D,

4.446 o , and 4.884 " . In (b) 6/6d is equal to: 5.306 o, 6.037 D, 6.636 o , and 7.235
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FIGURE 4. Scaled one-dimensional spectra, Flaa in the unforced wake at _ _ =

0.0 and .... 7/= 0.5. 6/3d is equal to; 3.494 O , 4.008 o, 4.446 o , and 4.884 A .

spectra in the xl-direction (partially because these spectra are spatially averaged

in the xl-direction, which is 4 times longer than the x3-direction used to average

The large-scale motions make a contribution to the two-point velocity correlation

tensor for all separation distances. Consequently, the structure functions in the
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FIGURE 5. Scaled one-dimensional spectra, F_2 in the forced wake at -- 77= 0.0

and .... 7/= 0.5. 6/6d is equal to; 5.306 o , 6.037 _, 6.636 o , and 7.235 "

x2-direction, given by

,2 2Ra, (x2,(u. - u') 2 = + ua - (15)

are used to compare the prediction of the similarity hypothesis and the data, since

they are more measures of the motions whose sizes are on the order of the separation

distance between the points. The structure functions for a = 1 centered around the

centerline and the half-deficit point in the unforced wake, scaled with appropriate

similarity variables, are shown in Figs. 6a and 6b. In both cases the profiles from

the four different times collapse for small and intermediate separation distances,

suggesting again that the statistical measures of all but the largest scales of motion

in the flow are evolving as predicted by the similarity hypothesis. The structure

functions from the forced wake simulation also collapse for small and intermediate

separation distances when they are scaled using similarity variables (Ewing 1995).

_.,_ Scalar fields

The similarity analysis was also extended to the governing equations for a passive

scalar field. It was demonstrated that these equations admit similarity solutions for

both a scalar field with a mean deficit in the wake region and a scalar field where

the mean value in the two free streams differ. The predictions of the similarity

hypothesis were compared to data from the simulations, which were computed with

this second type of scalar field. However, the variations of the two-point scalar
correlation in the simulations were much smaller than the variations of the two-

point velocity correlation tensor (as predicted by the similarity hypothesis). As
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FIGURE 6. Scaled structure functions about (a) q = 0 (b) q = 0.5. 6/6d is equal

to: 3.494 o , 4.008 o, 4.446 o , and 4.884 ,_

a result, the data from the period where the simulations were approximately self-

similar did not vary sufficiently to rigorously test the predictions of the similarity

hypothesis for the scalar field. Further details of this comparison can be found in

Ewing (1995).

3. Conclusions

The analysis demonstrated that the governing equations for the two-point veloc-

ity correlation tensor in the temporally evolving wake admit similarity solutions,

which include the similarity solutions for the single-point moment as a special case.

The resulting equations for the similarity solutions include two constants, /3 and

Re6, that are ratios of three characteristic time scales of processes in the flow: a

viscous time scale, a time scale characteristic of the spread rate of the flow, and a

characteristic time scale of the mean strain rate. The values of these ratios depend

on the initial conditions of the flow and are most likely measures of the coher-
ent structures in the initial conditions. The occurrences of these constants in the

governing equations for the similarity solutions indicates that these solutions, in

general, will only be the same for two flows if these two constants are equal (and

hence the coherent structures in the flows are related).

The comparisons between the predictions of the similarity hypothesis and the data

presented here and elsewhere (Ewing 1995) indicate that the similarity solutions for

the two-point correlation tensors provide a good approximation of the measures of

those motions that are not significantly affected by the boundary conditions caused

by the finite extent of real flows. Thus, the two-point similarity hypothesis provides

a useful tool for both numerical and physical experimentalist that can be used to

examine how the finite extent of real flows affect the evolution of the different scales

of motion in the flow. The similarity analysis of the governing equations for the

multi-point correlations can be extended to a wide range of spatially and temporally

evolving flows using the methodology outlined by Ewing (1995), so this technique
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can be used to examine the effect of finite boundaries on the evolution of a number

of different flows.
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