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Abstract 

The production of steel by continuous casting is facilitated by the use of refractory 

hollow-ware components. A critical component in this process is the submerged entry 

nozzle (SEN). The normal operating conditions of the SEN are arduous, involving 

large temperature gradients and exposure to mechanical forces arising from the flow 

of molten steel; experimental development of the components is challenging in so 

hazardous an environment. The effects of the thermal stress conditions in relation to a 

well-tried design were therefore simulated using a finite element analysis approach. It 

was concluded from analyses that failures of the type being experienced are caused by 

the large temperature gradient within the nozzle. The analyses pointed towards a 

supported shoulder area of the nozzle being most vulnerable to failure and practical 

in-service experience confirmed this. 

 

As a direct consequence of the investigation, design modifications, incorporating 

changes to both the internal geometry and to the nature of the intermediate support 

material, were implemented, thereby substantially reducing the stresses within the 

Al2O3/graphite ceramic liner.  Industrial trials of this modified design established that 

the component reliability would be significantly improved and the design has now 

been implemented in series production. 
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1   INTRODUCTION 

1.1 Refractory Components in Steelmaking 

The function of refractory components in the continuous casting of steel is two-fold.  

First, the liquid steel must be contained, directed and introduced into the casting 

mould in a controlled manner.  Modern casting involves pouring a number of ladles of 

steel in a continuous sequence which requires the establishment of a reservoir of 

liquid and the ability to change ceramic components if necessary during the casting 

sequence, Fig. 1.  The second function of the refractory nozzles is to protect the liquid 

steel flow from the possibility of oxidation by air during casting which would result in 

unacceptable levels of oxide inclusions in the steel. The life of such nozzles is 

invariably short, typically on the order of some hundreds of minutes [1].  

 

Until now the design of refractory pouring tubes has largely evolved from an 

empirical approach which combines in-service experience of the users with the 

knowledge built up in various ceramic manufacturing companies.  In general, this has 

been an adequate, if not optimal, mode of development but, nevertheless, it is 

recognised in the industry that hollow-ware operates very close to the limit of 

performance and that small, seemingly insignificant, changes, either in the design or 

manufacture of the refractory component, or in operating procedure in the steel works, 

can lead to failure in service.  Such failures are almost invariably catastrophic, leading 

to spillage of liquid steel, and are extremely expensive in loss of time and product as a 

full casting sequence is interrupted.  The refractories used in ladle shrouds and 
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submerged entry nozzles are based on oxide ceramic and flake graphite materials.  

The mixture of materials is chosen to be mechanically strong, to have high thermal 

conductivity, and to resist erosion/corrosion by the flow of liquid steel.  The tubes are 

manufactured by cold isostatic pressing, followed by pressureless sintering in a 

controlled atmosphere. The resulting product is a porous ceramic which is fitted with 

metallic parts to allow for argon gas purging of the assembly in service, and to 

facilitate attachment of the nozzle to tube-changer mechanisms.  Within this complex 

component, it is, however, possible to devise improvements based on the application 

of new design methods and the use of improved materials which could significantly 

increase the margin of safety and the economy of use.  Until now, progress in 

implementing new approaches has been somewhat inhibited due to the innate 

conservatism in the industry which arises from very obvious safety considerations.  

Hitherto, new materials or design concepts have been introduced by an empirical 

approach, traditional in the refractories industry, but the advent of rapid, cost effective 

finite element analysis offers the opportunity to assess potential improvements due to 

changes in design or materials of refractory components more safely and 

economically than has previously been the case. 

   

The specific objective of the present work, then, was to develop a finite element 

model to improve the design and manufacture of pouring tubes (refractory hollow-

ware); the approach developed here can also be applied more widely to the design of 

ceramic ware in other similar operating environments. The particular pouring tube 

examined was the submerged entry nozzle which is used to convey molten steel on its 

way from the tundish to the mould as depicted in Fig. 1. In service, the risk of thermal 

shock to the SENs, at the start of the pouring sequence, is minimised by pre-heating 
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the component to 500
o
C, but SENs must also endure large steady state temperature 

gradients, with temperatures ranging from approximately 1500
o
C at the bore, in 

contact with the molten steel, whilst the air temperature outside the tube section is 

200
o
C.   

 

As already stated, steel breakouts due to SEN failures can be extremely dangerous and 

as a result the approach to experimental design changes has been risk-averse. The 

operating environment is not conducive to any form of experimental stress analysis 

method. It is clear, then, that the problem is rather intractable with regard to 

engineering development. It is for these reasons that finite element analysis has the 

potential to be an attractive tool for evaluating the performance of new design 

configurations and, given the ability to tailor the properties of refractory materials in 

practice, to determine optimal materials properties to minimise stress within the SEN.   

 

1.2 Computational Analysis of Refractory Components 

A number of reports have described recent applications of finite element analysis in 

relation to thermal and structural investigations of refractories in steelmaking and 

continuous casting. These have tended to concentrate around problems relating to the 

pouring ladle and its shroud (e.g., [2, 3]) and furnace linings, such as in basic oxygen 

furnaces [4]. Yoshikawa et al stated that there has been little stress analysis work done 

on multilayer SENs [5] and, in relation to design analysis, this continues to be the 

case. Schmitt et al used the case of the submerged entry nozzle to demonstrate the 

efficacy of applying a combined micromechanics/computational approach to 

prediction of the microstructural performance of the alumina/graphite material under 

conditions of thermal shock [6]. In a similar sense, Deng et al used finite element 
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analysis of microstructure to develop a regime for inducing residual stresses during 

the SEN manufacturing process with the aim of reducing erosion of the component in 

service [7]. However, given that the present work was aimed directly at using the 

thermal and structural analysis capabilities of finite element analysis to improve the 

performance of an existing SEN design within the constraints imposed by geometry 

and cost, coupled with the need to use a standard range of materials, then perhaps the 

most encouraging report was by Raidl [8]; in this, he stated that by using 

computational thermal and mechanical analysis in the redesign of the refractories of 

vacuum degassing components in steelmaking, and with no change to the constituent 

materials, the life of the equipment was extended in service by 100%. 

 

2.  ASSESSMENT OF ORIGINAL SEN DESIGN 

2.1 Description 

The submerged entry nozzle comprises a ceramic liner at the bore, housed in a steel 

casing with a layer of insulating cement between.  Fig. 2 shows a typical head section 

of an SEN.  The ceramic material is a mixture of Al2O3 and graphite flake, the 

graphite being added to increase the thermal conductivity of the material, thereby 

improving the component‟s resistance to thermal stress and thermal shock.  The 

choice of material used in the bore of the nozzle is critical to the purity of the 

produced steel because dissolution of refractory components into the molten steel can 

lead to an undesirable level of contamination of the product.  The nozzles are 

submerged throughout the casting process in order to prevent oxidation of the liquid 

metal and the steel exits the SEN through two ports on opposite sides of the pouring 

tube, as illustrated in Fig. 3. 
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2.2 Numerical Analysis Procedure 

The commercial finite element package, ANSYS (Version 12) [9], was used in the 

present work. In the first instance, a coupled thermal stress analysis was used to 

identify regions of high stress of the original SEN configuration, leading dimensions 

of which are given in Fig. 3.  The geometry of the SENs is symmetrical about 2 axes 

and therefore it was necessary to generate only a quarter-model of the geometry and 

apply symmetry boundary conditions to the nodes lying on the faces parallel to the 

axes of symmetry.  The upper 150 mm of the SEN was modelled, as failures occur 

only within this head section.  

 

2.3 Thermal Analysis Elements  

For the thermal analysis, the component was modelled using the ANSYS SOLID 87 

element; this is a 3-dimensional 10 node tetrahedral thermal solid element, which can 

be conveniently utilised to describe curved geometries.  The element has a single 

degree of freedom, temperature, at each of its 10 nodes.  A default element size of 

10mm was employed in all the analyses reported here, as this was found to provide a 

suitable compromise between accuracy and solution time. Front and rear views of the 

quarter-geometry mesh of the original configuration are shown in Fig. 4.  (At this 

stage of the investigation, it was decided that, primarily with regard to speed of 

computation, the interfaces between the constituent components of the SEN would be 

shared. As will be demonstrated, the considerable attractions of this approach 

regarding its convenience of application are negated by its results.) 
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The temperature of the molten steel, which was applied to the nodes at the bore, was 

1500
o
C, whilst the air temperature surrounding the SEN was measured in service to 

be 200
o
C. 

The overall heat transfer coefficient, needed to enable the finite element analysis to 

compute the local rate of heat dissipation from the surface of the SEN, was obtained 

using an iterative procedure described in the flow chart, Fig. 5. First of all, the heat 

transfer coefficient by free convection  (hc) over a vertical cylinder in a turbulent air 

flow was taken to be 12.7 watts/m
2
K [10] and can be assumed to be virtually constant 

over the surface and fluid temperature range of interest in the current problem. For a 

thermally radiating surface, the heat radiated, Qr, is given approximately by the 

Stefan-Boltzmann Law: 

                                                  
4TQr        (1) 

where ε = the surface emissivity = 0.8 for oxidised steel [11], σ = the Stefan- 

Boltzmann constant = 56.7x10
-12

 kW/m
2 o

K
4
  and T = surface temperature 

o
K.   

 

Following the procedure shown in Fig 5, a value of surface temperature of 500
o
C, 

known to be the pre-heated temperature of the SEN and the approximate value in 

service over much of the uniform cylindrical area of the assembly, was used to “seed” 

the process. The radiation component, hr, of the heat transfer coefficient (outer surface 

to surroundings) was iteratively modified until the surface temperature, TFE , obtained 

from the finite element heat transfer simulation of the conduction through the SEN 

wall, equalled the surface temperature, Tcr , computed from predictions of heat 

transfer away from the surface by combined  free convection and radiation. Using this 

approach, the value for the total heat transfer coefficient, htotal, converged to 41 



8 

watts/m
2
 

o
K. This value, used throughout the work, together with the thermal 

properties of the materials given in Table 1 [11] allowed the steady state temperature 

profile across the SEN to be determined by finite element thermal analysis. 

 

2.4 Structural Analysis Elements 

The elements used at this stage in the structural analysis were ANSYS SOLID 92; this 

element is a 3-D 10-node tetrahedral structural solid element.  In this element, three 

degrees of freedom exist at each node: translations in the nodal x, y and z directions.  

The nodal temperature values from the thermal analysis were imported into the 

structural analysis model. The structural solver was then able to compute the 

distribution of stresses arising from the imposed temperature condition. 

 

In service, the SEN is supported under two parallel shoulders by equi-spaced springs, 

numbering three on each side.  In order to apply this support in the model, the nodes 

under two parallel shoulders were fully constrained in the vertical (i.e., y) direction, 

this representing the worst case.  The springs under the shoulders exert an upwards 

force on the SEN such that its top surface is pressed against the slide gates above (the 

gates are used to control the flow of steel into the nozzle).  This condition was 

represented in the models by fully constraining the nodes at the top surface in all 

directions. 

 

2.5 Preliminary Results – Thermal Load 

In order to set a baseline for the subsequent study, the original “in-service” design of 

the SEN was first analysed with the aim of examining whether the large temperature 

gradient alone is sufficient to cause failure.  Fig. 6(a) shows the computed temperature 
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distribution throughout the entire SEN.  The peak temperature difference across the 

SEN is seen to be 890
o
C, as the temperature of the outer surface of the steel casing is 

610
o
C compared with 1500

o
C at the bore.  Fig. 6(b) shows the temperature profile 

within the Al2O3/graphite ceramic material in isolation, this being the component of 

primary concern.  It can be seen that a large temperature gradient exists across the 

Al2O3/graphite ceramic material, 1500
o
C at the bore and 883

o
C at the outermost edge 

of the ceramic at the top surface. 

 

As previously stated, the temperature distribution computed in the initial stage of the 

analysis was imposed on the structural model to produce a stress distribution.  

Contours of 1
st
 principal stress magnitude are shown in Fig. 7. The Rankine failure 

criterion was employed [13], this being suitable for low cohesion materials typified by 

the brittle Al2O3/graphite ceramic under investigation, and which states that failure 

occurs when the maximum principal stress reaches the uniaxial tensile strength of the 

material. The failure criterion was set to 10 MPa, the Modulus of Rupture (MOR) of 

the Al2O3/graphite ceramic material [12].  The lower and upper limits of the stress 

plot contours were set to 1 MPa and 10 MPa respectively, to allow low stress and high 

stress critical regions to be easily identified. 

 

Based on this analysis, the stresses within the Al2O3/graphite would be predicted to be 

in excess of the critical limit of 10 MPa throughout most of the SEN body, as can be 

seen in Fig. 7 and very little variation was observed between the bulk of the supported 

and the unsupported shoulder (right hand and left hand shoulders respectively in Fig. 

7).   

 

http://www.efunda.com/formulae/solid_mechanics/mat_mechanics/plane_stress_principal.cfm#Principal
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The observations above lead to a conclusion that the effects of standard operating 

temperatures would be very much more than sufficient, invariably, to cause the SEN 

to fail when, in fact, it is known from practical experience that this is not the case.  In 

the model, the three sections of the SEN, the ceramic, the insulating cement and the 

steel casing, are joined together by common interfaces comprising shared nodes.  This 

representation means that thermal expansion of each individual material must also be 

accommodated by the adjoining materials.  So, for example, the steel casing at the 

outer surface, which the model predicts to experience a temperature of 610
o
C, will 

undergo far greater displacement, due to thermal expansion, than the insulating 

cement and the ceramic material, owing to the higher thermal expansion coefficient of 

the steel, Table 1.  As a consequence, the contiguous insulation concrete and ceramic 

materials are displaced unrealistically by their attachment to the steel casing, resulting 

in unfeasibly large tensile forces within the head section of the SEN. 

 

Further, the top surface nodes of the component are fully constrained in the x, y and z 

directions and therefore expansion upwards is not permitted in the model.  This 

constraint prevents displacement of the top of the ceramic, of the insulating cement, 

and of the steel casing sections. Each of these experiences thermal expansion which 

generates tensile forces within the critical head section of the SEN. 

 

The maximum stress, 221 MPa, was observed along the edge of the base of the 

supported shoulder at the rear of the SEN.  This effect can also be attributed to the 

constraints imposed upon the component by the model, which have been shown to be 

unrealistic.  The shoulder support is represented in the model by fully constraining the 

surface nodes under the shoulder in the y direction.  This constraint prevents 
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expansion in the vertical direction at the shoulder region.  Expansion in the head 

section of the supported shoulder region can therefore only be accommodated in the 

outward radial direction, owing to the combined vertical constraint on the top surface 

and on the base of the shoulder.  This condition generates large tensile stresses at the 

shoulder constraint as the nodes in this region are constraining the effects of the 

thermal expansion in the vertical direction. 

 

3. ENHANCED MULTI-COMPONENT MODEL 

3.1 Limitations of Simple Model 

The use of shared interfaces, within the simple model, between each of the three 

different materials of the SEN (ceramic, insulating cement and steel), and full 

constraint at the top surface, led to a prediction of unrealistically high stress.  A more 

representative simulation was developed by reconfiguring the model of the SEN into a 

multi component assembly.  Each component of the SEN was now modelled as an 

entirely separate geometric entity, each having a separate interface connected to the 

neighbouring component indirectly by contact elements.  The top surface constraint 

was also removed and replaced with contact elements connected to additional 

volumes which were designed to represent the slide gate above the SEN. 

 

3.2 Analysis Procedure – Multi-Component SEN Assembly 

In this approach, the interfaces between the components consisted of two sets of 

nodes at identical locations.  As the SEN geometry was no longer a continuous body, 

it was necessary to couple the two sets of nodes at each of the interfaces with respect 

to temperature.  In other words, the model enabled heat flow by direct conduction 

through the ceramic-concrete and concrete-steel interfaces. 
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The inclusion of contact elements at the interfaces provided the three components 

comprising the SEN with limited constraint insofar as penetration of one interface 

through the surface of the adjoining component is prevented. The contact and target 

elements used in all the contact analysis in the present work were ANSYS CONTA 

174, a 3-D, 8 node, surface-to-surface contact element used to represent contact and 

sliding between 3D target surfaces defined by target elements, TARGE 170.  CONTA 

174 has 3 degrees of freedom at each node: translations in the nodal x, y and z 

directions. The contact elements are located on the surfaces of the 3-D structural 

elements, these being of identical type to those used in the simple preliminary model.  

 

At the ceramic-concrete interface, the ceramic surfaces were defined as the contact 

surface and the concrete areas as the target (towards which the contact surface moves 

in this type of analysis). The contact type was set to „standard‟ for the ceramic-

concrete interface, this setting permitting both sliding and separation (it was evident 

from post-service examination of these nozzles that separation does, in fact, occur at 

this interface).  Likewise, for the concrete-steel interface the concrete areas were 

defined as the „contact‟ surface and the steel areas as „target‟, with the contact type set 

to „sliding‟.  The coefficient of friction for each solid interface is given in Table 2 [14, 

15].  The temperature distribution of the thermal analysis was imported into the 

structural analysis where it was used to calculate thermal stress.  

 

The model was developed further by the inclusion of volumes above the top surface 

of the SEN to represent the slide gate.  A mirror image of the top surface was created 

and these areas were then translated upward to form 30 mm deep volumes.  The slide 
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gate volumes extend 5 mm beyond the edge of the SEN in the model to allow for SEN 

expansion.  Contact elements were included at the interface between the top of the 

three SEN components and the slide gate.  The areas at the top surface of the SEN 

were defined as the contact surface and the areas at the base of the slide gate were 

designated as the target surface, the target and contact elements utilised being as 

detailed above.  The contact type was set as „standard‟ and the coefficients of friction 

are given in Table 2.  The volumes representing the slide gates were fully constrained 

in the x, y and z directions and omitted from the thermal solution. 

 

4. Results 

This multi-component model of the SEN incorporating interfacial contact elements 

was solved using identical thermal parameters to those used in the earlier, simple, 

shared-interface model so as to allow direct comparison of the two solutions, and to 

enable examination of the influence of the model boundary conditions. 

 

The steady state temperature profiles obtained for both the simple single entity model 

and for the multi-component contact model for the original SEN design are almost 

identical and this is as one would expect. The thermal gradient across the ceramic is 

1500 – 883
o
C in the simple model, and 1500 – 885

o
C in the multi-component contact 

model. (Similar temperature profiles are to be expected as the additional volumes 

representing the slide gate are not included in the thermal solution and heat 

conduction through the body in the enhanced model is represented by thermally 

coupling the nodes at the interfaces.) 

 

4.1 Differences between analytical predictions 
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There are considerable differences between the stress distribution generated by the 

effect of temperature within the Al2O3/graphite material in the simple model (Fig. 7) 

and that of the multi-component contact model (Fig. 8). In the enhanced analysis 

model, the tensile stress induced throughout the major part of the entire body of the 

Al2O3/graphite ceramic, with the exception of some higher stress regions at the 

transition between the head section and the tube section at the rear of the SEN, is 

below the failure criterion of 10 MPa.  (Extended in-service experience of operation 

of this configuration of SEN confirms that the unit is, in fact susceptible to failure in 

the zones highlighted by the enhanced model, as will be discussed below.) 

 

In the simple model, high tensile stresses (max 221 MPa) are present in the head 

section and close to the bore on both the supported and unsupported sides of the 

Al2O3/graphite ceramic material (right and left hand side respectively in Fig. 7).  In 

the enhanced model, however, the unsupported edge of the Al2O3/graphite ceramic is 

under compression at the bore region, whilst the supported shoulder experiences 

tension at the bore and compression in the upper head section above the shoulder 

support (Fig. 8).  These differences are due to the respective boundary conditions. 

 

4.2 Interpretation of computed results 

The large differences in predicted stress distribution between the two different 

modelling approaches can be explained as follows.  In the simple model the top 

surface nodes are fully constrained, preventing any displacement of the component, 

and the different materials comprising the SEN are joined at shared interfaces.  The 

large temperature gradient across the component, 1500
o
C at the bore and 610

o
C at the 

outer casing, causes the SEN materials to expand and the joined interfaces force the 
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ceramic material to be displaced unrealistically, generating high tensile stresses 

throughout the SEN in the simple model.  The inclusion of contact elements at the 

materials interfaces in the enhanced model, although greatly increasing the 

computational cost of analysis (by about three orders of magnitude), provides greater 

confidence in the veracity of the model and reduces the predicted tensile stresses to 

levels which operational experience confirms are generally sustainable, albeit with a 

degree of variability in component life.  Confidence in the enhanced model was 

further reinforced by the observation that, employing the Rankine failure criterion to 

the stress plots, the zone predicted to have the highest tensile values of principal stress 

was located in the area in which failures in this particular type of SEN invariably 

occur (Fig. 8) [12]. 

 

5. SEN Design Modification 

One of the primary objectives of the work reported here was to establish which factors 

were responsible for the mode of failure frequently observed in an existing design of 

SEN.  The insight gained from the analysis was next put to use in a radical redesign of 

the unit which was modified by removing the brittle Al2O3/graphite material from the 

shoulder section and the stress raising corner area.  The outer dimensions of the steel 

casing could not be altered as these are dictated by the practical configuration of the 

steel plant fixtures and it was desirable to retain the Al2O3/graphite material at the 

bore to exploit the advantageous properties of the material i.e., excellent resistance to 

erosion and corrosion.  However, it was possible to alter the geometry of the ceramic 

component within these restrictions by replacing the Al2O3/graphite at the shoulder 

with refractory concrete and contouring the Al2O3/graphite ceramic to remove any 

abrupt changes in geometry which could potentially act as stress raisers.  An iterative 
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process of geometric modification led to an optimised final geometry of improved 

design as shown in Fig. 9.   

 

Analysis of the improved design was conducted using identical parameters and 

boundary conditions to those previously described for the original in-service design in 

the enhanced (with contact interfaces) numerical model.  Fig. 9 shows the meshed 

quarter geometry of the final iteration of improved design. 

 

Fig. 10 shows front and rear views of the 1
st
 principal stress profile in the 

Al2O3/graphite material of the final improved geometry.  The stress throughout the 

upper section of the Al2O3/graphite ceramic is everywhere well below the critical 

limit of 10 MPa, and a maximum of only 3.2 MPa is predicted, a substantial decrease 

when compared to the original design, (1 max = 39 MPa).  Furthermore, there is a 

large area under compressive stress close to the bore in both the supported and 

unsupported shoulders of the Al2O3/graphite ceramic; this will substantially eliminate 

crack movement towards the bore, and provides confidence that the modified design 

will be much less vulnerable to this mode of failure than was the original design.   

 

A further advantage of the new design is that there is a decrease in the temperature 

gradient across the Al2O3/graphite ceramic.  In the original design, the temperature 

difference was computed to be 615
o
C at the top surface of the Al2O3/graphite ceramic, 

as shown in Fig. 6(b).  However, in the modified design the difference falls by approx. 

50% to 274
o
C, as the temperature of the outer surface of the ceramic is increased to 

1226
o
C as a result of the design modifications (Fig. 12). In addition to the predicted 

consequence of this, in the reduction in steady-state thermal stress, it is likely to be 
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beneficial in reducing the transient effects of thermal shock to the component on start 

up.   

 

5. Discussion - General 

The results of the multi component contact analyses of the original design suggest that 

the steady-state thermal conditions alone are sufficient locally to initiate component 

failure. The tensile stress, within the component head around the supported shoulder, 

exceeds the failure criterion of the Al2O3/graphite material only in a localised area. 

Operational experience confirms that failures invariably stem from cracks originating 

in the area highlighted by the analysis.  These results are in line with post-service 

observations of failed SENs of the original configuration, which invariably show that 

the failure crack initiates at the change in section of the supported shoulder and 

propagates upwards at an angle of 45
o
 towards the bore [12].   

 

Looking in more detail at the original design, one can see that the supported shoulder 

is more severely affected by the stress generated by the high temperatures, as shown 

in Fig. 8.  However, in the unsupported shoulder, a region of compression at the bore 

serves to inhibit crack propagation and protect the shoulder. 

 

5.1 Discussion - Implementation of Design Improvements  

The analyses performed here provided valuable insights and directed modifications to 

the design of the SEN.  It appeared that removal of the weak Al2O3/graphite ceramic 

material from the vulnerable shoulder regions of the SEN would prove beneficial in 

reducing the stress within the Al2O3/graphite material to below the failure criterion of 

10 MPa.   
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Further, in the modified design, the Al2O3/graphite material surrounding the bore 

region is now computationally predicted to be in compression, the objective in this 

regard being to improve resistance of the SEN to the initiation and growth of cracks. 

 

Having predicted, from the finite element analyses, that the modified design would 

experience tensile stress within the Al2O3/graphite ceramic section of the SEN well 

below the failure criterion, this design was taken forward to trial.  These were 

successful and the reliability of the component has been significantly enhanced, 

resulting in very worthwhile concomitant gains in plant availability and safety. The 

design has now been adopted into series production [12]. 

 

6. Conclusions 

Finite element analysis of this type of complex problem, that of a submerged entry 

nozzle for continuous steel casting, involving, as it does, large temperature 

differences, steep temperature gradients, stress loadings, and a mixture of components 

with widely varying material properties, has been shown to be a practicable and 

efficient tool for design development. 

 

It was established that a simple approach to the analysis, in which the components 

shared interfaces, resulted in a model which was over-constrained and, although 

desirable in terms of computational requirements, this approach predicted stress 

conditions which are known from experience to be unfeasible. 
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An enhanced solution strategy, in which the interface conditions were treated as 

contact problems, produced stress solutions which were in good agreement with the 

empirical evidence obtained from SENs which had failed in service. (No other 

experimental means of assessing the result was technically viable, given the 

aggressive environment of the in-plant conditions.) 

 

Supported shoulders were found to be vulnerable to failure.  By way of contrast, the 

corner under the unsupported shoulder is subjected to relatively low tensile stresses 

and, furthermore, the material immediately adjacent to this closer to the bore is also 

protected by being in compression. 

 

Using the information revealed by the analysis, in conjunction with knowledge 

derived from practical operating experience of the original units, the task of devising 

an improved, more reliable design of SEN was simplified. Confidence in adopting the 

prototype units for trial operations was also reinforced by following this approach. 

 

Subsequently, by applying this method of design analysis, it was possible 

conveniently to evaluate the performance of alternative candidate geometries. The 

result of this process indicated that replacement of the Al2O3/graphite ceramic 

material in the vulnerable shoulder sections would reduce the tensile stresses in the 

component to less than 40% of the modulus of rupture.   

 

Industrial trials of the modified design showed the component reliability to be greatly 

improved and the design has now been adopted as the manufacturer‟s standard 

product. 
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LIST OF FIGURE CAPTIONS 

Fig. 1  Schematic illustrating continuous casting of steel 

Fig. 2  Quarter section view of original SEN head 

Fig. 3  Half section scale view of full length SEN 

Fig. 4  Quarter section front and rear views of mesh of original configuration of SEN 

Fig. 5  Flowchart showing method of iterative calculation of heat transfer coefficient 
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Fig. 6  Plot of computed temperature distribution throughout (a) all SEN components 

(b) ceramic section in isolation, of the original design 

Fig. 7  Front view of 1
st
 principal stress distribution within the ceramic section of the 

original design, as predicted by the simple simulation 

Fig. 8  Front and rear views of 1
st
 principal stress distribution within the ceramic 

section of the original design, as predicted by the enhanced simulation including 

contact 

Fig. 9  Quarter section view of modified SEN head 

Fig. 10  Quarter section front and rear views of modified configuration of SEN mesh   

Fig. 11  Front and rear views of 1
st
 principal stress distribution within the ceramic 

section of the modified design, as predicted by the enhanced simulation including 

contact 

Fig. 11  Plot of computed temperature distribution throughout (a) all SEN components 

(b) ceramic section in isolation, of the modified design 

  

APPENDIX 

 

Notation 

 

Ai   internal bore area  

F  reaction force  

 

g  universal gravitational constant 

 

h  heat transfer coefficient 

 

l   height of SEN 

 

m  mass 

 

MOR  modulus of rupture 

 

Q   volumetric flow rate of liquid steel 
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Qr  radiated heat 

 

SEN  submerged entry nozzle 

 

T  surface temperature  

u   liquid steel velocity 

 

  surface emissivity 

i  internal diameter of tube

o  outer diameter of tube 

   coefficient of friction

  density of steel 

  Stefan- Boltzmann constant  

  1st principal stress 

 



Table  1  Properties of materials used in SENs 

 

 

 

Material 

 

 

Density 

(kg / m
3
) 

 

Young’s 

modulus 

(GPa) 

 

 

 

 

Poissons ratio 

 

Thermal 

conductivity 

(W. m
-1

. K
-1

) 

 

Thermal 

expansion 

(K
-1

) 

Ceramic (Al2O3/graphite) 2380 2 0.25 13x10
-6

 4x10
-6

 

Insulating cement 2000 15 0.3 1.2x10
-6

 7x10
-6

 

Steel casing 7860 207 0.3 40x10
-6

 16x10
-6

 

Refractory concrete 3100 30 0.3 3.1x10
-6

 7x10
-6

 

 

Table



Table  2  Coefficients of friction of contact interfaces used in enhanced model 

 

Contact surface 

 

 

Target surface 

 

Coefficient of 

friction () 

 

Ceramic (Al2O3/graphite) Insulating cement  

(Refractory concrete in modified design) 

0.65 

Insulating cement  

(Refractory concrete in modified design) 

Steel casing 0.47 

Steel slide gate Top surface of ceramic (Al2O3/graphite) 0.47 

 

Table
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