7 research outputs found

    Genetics University of Toronto Thrombophilia Study in Women (GUTTSI): genetic and other risk factors for venous thromboembolism in women

    Get PDF
    BACKGROUND: Women may be at increased risk for venous thromboembolism (VTE) as compared with men. We studied the effects of genetic and biochemical markers of thrombophilia in women, in conjunction with other established risk factors for VTE. METHOD: The present retrospective case-control study was conducted in a thrombosis treatment programme at a large Toronto hospital. The cases were 129 women aged 16-79 years with objectively confirmed VTE. Age-matched control individuals were women who were free of venous thrombosis. Neither cases nor control individuals had known cardiovascular disease. Participants were interviewed regarding personal risk factors for VTE, including smoking, history of malignancy, pregnancy, and oestrogen or oral contraceptive use. Blood specimens were analyzed for common single nucleotide polymorphisms of prothrombin, factor V and methylenetetrahydrofolate reductase (MTHFR; C677T, A1298C and T1317C), and the A66G polymorphism for methionine synthase reductase (MTRR).Fasting plasma homocysteine was also analyzed. RESULTS: Women with VTE were significantly more likely than female control individuals to carry the prothrombin polymorphism and the factor V polymorphism, or to have fasting hyperhomocysteinaemia. Homozygosity for the C677T MTHFR gene was not a significant risk factor for VTE, or were the A1298C or T1317C MTHFR homozygous variants. Also, the A66G MTRR homozygous state did not confer an increased risk for VTE. CONCLUSION: Prothrombin and factor V polymorphisms increased the risk for VTE in women, independent from other established risk factors. Although hyperhomocysteinaemia also heightens this risk, common polymorphisms in two genes that are responsible for homocysteine remethylation do not. These findings are consistent with previous studies that included both men and women

    Chemical and biomechanical characterization of hyperhomocysteinemic bone disease in an animal model

    Get PDF
    BACKGROUND: Classical homocystinuria is an autosomal recessive disorder caused by cystathionine β-synthase (CBS) deficiency and characterized by distinctive alterations of bone growth and skeletal development. Skeletal changes include a reduction in bone density, making it a potentially attractive model for the study of idiopathic osteoporosis. METHODS: To investigate this aspect of hyperhomocysteinemia, we supplemented developing chicks (n = 8) with 0.6% dl-homocysteine (hCySH) for the first 8 weeks of life in comparison to controls (n = 10), and studied biochemical, biomechanical and morphologic effects of this nutritional intervention. RESULTS: hCySH-fed animals grew faster and had longer tibiae at the end of the study. Plasma levels of hCySH, methionine, cystathionine, and inorganic sulfate were higher, but calcium, phosphate, and other indices of osteoblast metabolism were not different. Radiographs of the lower limbs showed generalized osteopenia and accelerated epiphyseal ossification with distinct metaphyseal and suprametaphyseal lucencies similar to those found in human homocystinurics. Although biomechanical testing of the tibiae, including maximal load to failure and bone stiffness, indicated stronger bone, strength was proportional to the increased length and cortical thickness in the hCySH-supplemented group. Bone ash weights and IR-spectroscopy of cortical bone showed no difference in mineral content, but there were higher Ca(2+)/PO(4)(3- )and lower Ca(2+)/CO(3)(2- )molar ratios than in controls. Mineral crystallization was unchanged. CONCLUSION: In this chick model, hyperhomocysteinemia causes greater radial and longitudinal bone growth, despite normal indices of bone formation. Although there is also evidence for an abnormal matrix and altered bone composition, our finding of normal biomechanical bone strength, once corrected for altered morphometry, suggests that any increase in the risk of long bone fracture in human hyperhomocysteinemic disease is small. We also conclude that the hCySH-supplemented chick is a promising model for study of the connective tissue abnormalities associated with homocystinuria and an important alternative model to the CBS knock-out mouse

    Royal academy of medicine in Ireland international conference on homocysteine metabolism from basic science to clinical medicine

    No full text
    corecore