10 research outputs found

    Annexin A1 Deficiency does not Affect Myofiber Repair but Delays Regeneration of Injured Muscles.

    Get PDF
    Repair and regeneration of the injured skeletal myofiber involves fusion of intracellular vesicles with sarcolemma and fusion of the muscle progenitor cells respectively. In vitro experiments have identified involvement of Annexin A1 (Anx A1) in both these fusion processes. To determine if Anx A1 contributes to these processes during muscle repair in vivo, we have assessed muscle growth and repair in Anx A1-deficient mouse (AnxA1-/-). We found that the lack of Anx A1 does not affect the muscle size and repair of myofibers following focal sarcolemmal injury and lengthening contraction injury. However, the lack of Anx A1 delayed muscle regeneration after notexin-induced injury. This delay in muscle regeneration was not caused by a slowdown in proliferation and differentiation of satellite cells. Instead, lack of Anx A1 lowered the proportion of differentiating myoblasts that managed to fuse with the injured myofibers by days 5 and 7 after notexin injury as compared to the wild type (w.t.) mice. Despite this early slowdown in fusion of Anx A1-/- myoblasts, regeneration caught up at later times post injury. These results establish in vivo role of Anx A1 in cell fusion required for myofiber regeneration and not in intracellular vesicle fusion needed for repair of myofiber sarcolemma

    Intracellular curvature-generating proteins in cell-to-cell fusion

    Get PDF
    Cell-to-cell fusion plays an important role in normal physiology and in different pathological conditions. Early fusion stages mediated by specialized proteins and yielding fusion pores are followed by a pore expansion stage that is dependent on cell metabolism and yet unidentified machinery. Because of a similarity of membrane bending in the fusion pore rim and in highly curved intracellular membrane compartments, in the present study we explored whether changes in the activity of the proteins that generate these compartments affect cell fusion initiated by protein fusogens of influenza virus and baculovirus. We raised the intracellular concentration of curvature-generating proteins in cells by either expressing or microinjecting the ENTH (epsin N-terminal homology) domain of epsin or by expressing the GRAF1 (GTPase regulator associated with focal adhesion kinase 1) BAR (Bin/amphiphysin/Rvs) domain or the FCHo2 (FCH domain-only protein 2) F-BAR domain. Each of these treatments promoted syncytium formation. Cell fusion extents were also influenced by treatments targeting the function of another curvature-generating protein, dynamin. Cell-membrane-permeant inhibitors of dynamin GTPase blocked expansion of fusion pores and dominant-negative mutants of dynamin influenced the syncytium formation extents. We also report that syncytium formation is inhibited by reagents lowering the content and accessibility of PtdIns(4,5)P2, an important regulator of intracellular membrane remodelling. Our findings indicate that fusion pore expansion at late stages of cell-to-cell fusion is mediated, directly or indirectly, by intracellular membrane-shaping proteins

    SLUG is a direct transcriptional repressor of PTEN tumor suppressor.

    No full text
    BACKGROUND: PTEN/AKT signaling plays a key role in prostate cancer development and maintenance of prostate cancer stem cells. How other oncogenes or tumor suppressors interact with this pathway remain to be elucidated. SLUG is an zinc finger transcription factor of the Snail superfamily, and it promotes cancer metastasis and determines the mammary stem cell state. METHODS: SLUG was overexpressed in cells by retroviral vector and knockdown of SLUG and PTEN was mediated by shRNAs-expressing lentiviruses. Expression level of SLUG and PTEN was examined by Western blot, RT-PCR, and qPCR analyses. PTEN promoter activity was measured by luciferase reporter assay. ChIP assay was used to measure the binding between SLUG and the PTEN promoter in vivo. RESULT: We showed that overexpression of SLUG decreased expression of PTEN tumor repressor in prostate cancer cell lines 22RV1 and DU145; conversely, knockdown of SLUG expression elevated PTEN expresson at both protein and RNA level in these cells. We demonstrated that SLUG overexpression inhibits PTEN promoter activity through the proximal promoter region in prostate cancer cells. By ChIP assay, we confirmed that SLUG directly binds to the PTEN promoter region covering the E-box sites. We also showed that Slug deficiency leads to an increased expression of PTEN in mouse embryo fibroblasts and prostate tissues. Importantly, we found that overexpression of SLUG increases drug resistance of DU145 prostate cancer cell line and knockdown of SLUG by shRNA sensitizes DU145 cell line to chemotherapeutic drugs. We further demonstrated that PTEN knockdown converts drug sensitivity of DU145 cells expressing SLUG shRNA to anticancer drugs. CONCLUSION: We provide compelling evidence showing that PTEN is a direct functional target of SLUG. Our findings offer new insight in the regulation of the PTEN/AKT pathway and provide a molecular basis for potential targeted therapies of prostate cancer Prostate 75:907-916, 2015. © 2015 Wiley Periodicals, Inc

    Interactions with Muscle Cells Boost Fusion, Stemness, and Drug Resistance of Prostate Cancer Cells.

    No full text
    Poorly understood interactions with nonmalignant cells within the tumor microenvironment play an important role in cancer progression. Here, we explored interactions between prostate cancer and muscle cells that surround the prostate. We found that coculturing of prostate cancer cells with skeletal or smooth muscle cells expands the subpopulations of cancer cells with features characteristic of cancer stem-like cells, including anchorage-independent growth, elevated CD133 expression, and drug resistance. These changes in the properties of cancer cells depend on: (i) the muscle cell-induced increases in the concentrations of interleukins 4 and 13; (ii) the cytokine-induced upregulation of the expression of syncytin 1 and annexin A5; and (iii) cancer cell fusion. In human prostate cancer tissues, expression of syncytin 1 and annexin A5, proteins that we found to be required for the cell fusion, positively correlated with the cancer development suggesting that these proteins can be used as biomarkers to evaluate cancer progression and potential therapeutic targets. IMPLICATIONS: The discovered effects of muscle cells on prostate cancer cells reveal a novel and specific pathway by which muscle cells in the microenvironment of prostate cancer cells promote cell fusion and cancer progression

    Survival motor neuron protein deficiency impairs myotube formation by altering myogenic gene expression and focal adhesion dynamics

    Get PDF
    While spinal muscular atrophy (SMA) is characterized by motor neuron degeneration, it is unclear whether and how much survival motor neuron (SMN) protein deficiency in muscle contributes to the pathophysiology of the disease. There is increasing evidence from patients and SMA model organisms that SMN deficiency causes intrinsic muscle defects. Here we investigated the role of SMN in muscle development using muscle cell lines and primary myoblasts. Formation of multinucleate myotubes by SMN-deficient muscle cells is inhibited at a stage preceding plasma membrane fusion. We found increased expression and reduced induction of key muscle development factors, such as MyoD and myogenin, with differentiation of SMN-deficient cells. In addition, SMN-deficient muscle cells had impaired cell migration and altered organization of focal adhesions and the actin cytoskeleton. Partially restoring SMN inhibited the premature expression of muscle differentiation markers, corrected the cytoskeletal abnormalities and improved myoblast fusion. These findings are consistent with a role for SMN in myotube formation through effects on muscle differentiation and cell motility

    Arabidopsis HAP2/GCS1 is a gamete fusion protein homologous to somatic and viral fusogens

    Get PDF
    Cell-cell fusion is inherent to sexual reproduction. Loss of HAP LESS 2/GEN ERA TIVE CELL SPE CIF IC 1 (HAP2/GCS1) proteins results in gamete fusion failure in diverse organisms, but their exact role is unclear. In this study, we show that Arabidopsis thaliana HAP2/GCS1 is sufficient to promote mammalian cell-cell fusion. Hemifusion and complete fusion depend on HAP2/GCS1 presence in both fusing cells. Furthermore, expression of HAP2 on the surface of pseudotyped vesicular stomatitis virus results in homotypic virus-cell fusion. We demonstrate that the Caenorhabditis elegans Epithelial Fusion Failure 1 (EFF-1) somatic cell fusogen can replace HAP2/GCS1 in one of the fusing membranes, indicating that HAP2/GCS1 and EFF-1 share a similar fusion mechanism. Structural modeling of the HAP2/GCS1 protein family predicts that they are homologous to EFF-1 and viral class II fusion proteins (e.g., Zika virus). We name this superfamily Fusexins: fusion proteins essential for sexual reproduction and exoplasmic merger of plasma membranes. We suggest a common origin and evolution of sexual reproduction, enveloped virus entry into cells, and somatic cell fusion.Fil: Valansi, Clari. Technion- Israel Institute of Technology; IsraelFil: Moi, David. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Leikina, Evgenia. National Institutes of Health; Estados UnidosFil: Matveev, Elena. Technion- Israel Institute of Technology; IsraelFil: Graña, Martín. Instituto Pasteur de Montevideo; UruguayFil: Chernomordik, Leonid V.. National Institutes of Health; Estados UnidosFil: Romero, Héctor. Universidad de la República; UruguayFil: Aguilar, Pablo Sebastián. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas; ArgentinaFil: Podbilewicz, Benjamin. Technion- Israel Institute of Technology; Israe
    corecore