363 research outputs found
Laser thermoelastic generation in metals above the melt threshold
An approach is presented for calculating thermoelastic generation of ultrasound in a metal plate exposed to nanosecond pulsed laser heating, sufficient to cause melting but not ablation. Detailed consideration is given to the spatial and temporal profiles of the laser pulse, penetration of the laser beam into the sample, the appearance and subsequent growth and then contraction of the melt pool, and the time dependent thermal conduction in the melt and surrounding solid throughout. The excitation of the ultrasound takes place during and shortly after the laser pulse and occurs predominantly within the thermal diffusion length of a micron or so beneath the surface. It is shown how, because of this, the output of the thermal simulations can be expressed as axially symmetric transient radial and normal surface force distributions. The epicentral displacement response to these force distributions is obtained by two methods, the one based on the elastodynamic Green’s functions for plate geometry determined by the Cagniard generalized ray method and the other using a finite
element numerical method. The two approaches are in very close agreement. Numerical simulations are reported on the epicentral displacement response of a 3.12mm thick tungsten plate irradiated with a 4 ns pulsed laser beam with Gaussian spatial profile, at intensities below and above the melt threshol
Negative linear compressibility in common materials
© 2015 AIP Publishing LLC. Negative linear compressibility (NLC) is still considered an exotic property, only observed in a few obscure crystals. The vast majority of materials compress axially in all directions when loaded in hydrostatic compression. However, a few materials have been observed which expand in one or two directions under hydrostatic compression. At present, the list of materials demonstrating this unusual behaviour is confined to a small number of relatively rare crystal phases, biological materials, and designed structures, and the lack of widespread availability hinders promising technological applications. Using improved representations of elastic properties, this study revisits existing databases of elastic constants and identifies several crystals missed by previous reviews. More importantly, several common materials - drawn polymers, certain types of paper and wood, and carbon fibre laminates - are found to display NLC. We show that NLC in these materials originates from the misalignment of polymers/fibres. Using a beam model, we propose that maximum NLC is obtained for misalignment of 26°. The existence of such widely available materials increases significantly the prospects for applications of NLC
Exchange bias and interface electronic structure in Ni/Co3O4(011)
A detailed study of the exchange bias effect and the interfacial electronic
structure in Ni/Co3O4(011) is reported. Large exchange anisotropies are
observed at low temperatures, and the exchange bias effect persists to
temperatures well above the Neel temperature of bulk Co3O4, of about 40 K: to
~80 K for Ni films deposited on well ordered oxide surfaces, and ~150 K for Ni
films deposited on rougher Co3O4 surfaces. Photoelectron spectroscopy
measurements as a function of Ni thickness show that Co reduction and Ni
oxidation occur over an extended interfacial region. We conclude that the
exchange bias observed in Ni/Co3O4, and in similar ferromagnetic metallic/Co3O4
systems, is not intrinsic to Co3O4 but rather due to the formation of CoO at
the interface.Comment: 8 pages, 6 figures. Accepted for publication in Physical Review B
Determination of the anisotropic elastic properties of rocksalt Ge2Sb2Te5 by XRD, residual stress, and DFT
© 2016 American Chemical Society. The chalcogenide material Ge2Sb2Te5 is the prototype phase-change material, with widespread applications for optical media and random access memory. However, the full set of its independent elastic properties has not yet been published. In this study, we determine the elastic constants of the rocksalt Ge2Sb2Te5, experimentally by X-ray diffraction (XRD) and residual stress and computationally by density functional theory (DFT). The stiffnesses (XRD-stress/DFT) in GPa are C11 = 41/58, C12 = 7/8, and C44 = 8/12, and the Zener ratio is 0.46/0.48. These values are important to understand the effect of elastic distortions and nonmelting processes on the performances of increasingly small phase change data bits
Wear of human teeth: a tribological perspective
The four main types of wear in teeth are attrition (enamel-on-enamel contact), abrasion (wear due to abrasive particles in food or toothpaste), abfraction (cracking in enamel and subsequent material loss), and erosion (chemical decomposition of the tooth). They occur as a result of a number of mechanisms including thegosis (sliding of teeth into their lateral position), bruxism (tooth grinding), mastication (chewing), toothbrushing, tooth flexure, and chemical effects. In this paper the current understanding of wear of enamel and dentine in teeth is reviewed in terms of these mechanisms and the major influencing factors are examined. In vitro tooth wear simulation and in vivo wear measurement and ranking are also discussed
Using coloured filters to reduce the symptoms of visual stress in children with reading delay
Background: Meares Irlen Syndrome (MIS), otherwise known as “visual stress”, is one condition that can cause difficulties with reading. Aim: This study aimed to compare the effect of two coloured-filter systems on the symptoms of visual stress in children with reading delay. Methods: The study design was a pre-test, post-test, randomized head-to-head comparison of two filter systems on the symptoms of visual stress in school children. A total of 68 UK mainstream schoolchildren with significant impairment in reading ability completed the study. Results: The filter systems appeared to have a large effect on the reported symptoms between pre and post three-month time points (d = 2.5, r = 0.78). Both filter types appeared to have large effects (Harris d = 1.79, r = 0.69 and DRT d = 3.22, r = 0.85). Importantly, 35% of participants’ reported that their symptoms had resolved completely; 72% of the 68 children appeared to gain improvements in three or more visual stress symptoms. Conclusion and significance: The reduction in symptoms, which appeared to be brought about by the use of coloured filters, eased the visual discomfort experienced by these children when reading. This type of intervention therefore has the potential to facilitate occupational engagement
Charged Particles in a 2+1 Curved Background
The coupling to a 2+1 background geometry of a quantized charged test
particle in a strong magnetic field is analyzed. Canonical operators adapting
to the fast and slow freedoms produce a natural expansion in the inverse square
root of the magnetic field strength. The fast freedom is solved to the second
order.
At any given time, space is parameterized by a couple of conjugate operators
and effectively behaves as the `phase space' of the slow freedom. The slow
Hamiltonian depends on the magnetic field norm, its covariant derivatives, the
scalar curvature and presents a peculiar coupling with the spin-connection.Comment: 22 page
- …