48 research outputs found

    Autologous Platelet-Rich Plasma and Mesenchymal Stem Cells for the Treatment of Chronic Wounds

    Get PDF
    Emerging autologous cellular therapies, utilizing platelet-rich plasma and mesenchymal stem cell applications, have the potential to play an adjunctive role in a standardized wound care treatment plan in patients suffering from chronic and recalcitrant wounds. The use of platelet-rich plasma growth is based on the fact that platelet growth factors can support the three phases of wound healing and then ultimately contribute to full wound closure. Mesenchymal stem cell-based therapies are also an attractive approach for the treatment of these difficult-to-heal wounds. This field of regenerative medicine focuses primarily on stem cells, which are specialized cells with the ability to self-renew and differentiate into multiple cell types. Mesenchymal stem cells can be isolated from bone marrow and adipose tissue via minimally manipulative and cell-processing techniques, at point of care. Both platelet-rich plasma and mesenchymal stem cell applications have the potential to become an effective and ideal autologous biological cell-based therapy, which can be applied to chronic wounds to effectively change the wound bed microenvironment to enable and accelerate wound closure

    The Rationale of Autologously Prepared Bone Marrow Aspirate Concentrate for use in Regenerative Medicine Applications

    Get PDF
    Autologously prepared bone marrow aspirate concentrates, have the potential to play an adjunctive role in various patient pathologies that have not been able to heal with conventional treatment modalities. The use of bone marrow aspirate (BMA) and concentrates in regenerative medicine treatment plans and clinical applications is based on the fact that bone marrow cells, including progenitor and nucleated cells, platelets, and other cytokines, support in tissue healing and tissue regenerative processes. The use of concentrated BMA cells focuses primarily on mesenchymal stem cells (MSCs), with the ability to self-renew and differentiate into multiple cell types. Concentrated bone marrow cells can be retrieved from harvested BMA and ensuing minimal manipulative cell processing techniques, executed at point of care (POC). The application of bone marrow biological therapies may offer solutions in musculoskeletal pathologies, spinal disorders, chronic wound care, and critical limb ischemia (CLI), to effectively change the local microenvironment to support in tissue healing and facilitate tissue regeneration. This chapter will address the cellular content of bone marrow tissue, harvesting and preparation techniques, and discuss the biological characteristics of individual marrow cells, their inter-connectivity, and deliberate on the effects of BMA concentration

    Proteomic analysis of platelet-rich and platelet-poor plasma

    Full text link
    Background Autologous blood products, such as platelet-rich plasma (PRP) are commercial products broadly used to accelerate healing of tissues after injuries. However, their content is not standardized and significantly varies in composition, which may lead to differences in clinical efficacy. Also, the underlying molecular mechanisms for therapeutic effects are not well understood. Purpose A proteomic study was performed to compare the composition of low leukocyte PRP, platelet poor plasma (PPP), and blood plasma. Pathway analysis of the proteomic data was performed to evaluate differences between plasma formulations at the molecular level. Low abundance regulatory proteins in plasma were identified and quantified as well as cellular pathways regulated by those proteins. Methods Quantitative proteomic analysis, using multiplexed isotopically labeled tags (TMT labeling) and label-free tandem mass spectrometry, was performed on plasma, low leukocyte PRP, and PPP. Plasma formulations were derived from two blood donors (one donor per experiment). Pathway analysis of the proteomic data identified the major differences between formulations. Results Nearly 600 proteins were detected in three types of blood plasma formulations in two experiments. Identified proteins showed more than 50% overlap between plasma formulations. Detected proteins represented more than 100 canonical pathways, as was identified by pathway analysis. The major pathways and regulatory molecules were linked to inflammation. Conclusion Three types of plasma formulations were compared in two proteomic experiments. The most represented pathways, such as Acute Phase Response, Coagulation, or System of the Complement, had many proteins in common in both experiments. In both experiments plasma sample sets had the same direction of biochemical pathway changes: up- or down-regulation. The most represented biochemical pathways are linked to inflammation

    Preclinical evaluation of transcriptional targeting strategies for carcinoma of the breast in a tissue slice model system

    Get PDF
    INTRODUCTION: In view of the limited success of available treatment modalities for metastatic breast cancer, alternative and complementary strategies need to be developed. Adenoviral vector mediated strategies for breast cancer gene therapy and virotherapy are a promising novel therapeutic platform for the treatment of breast cancer. However, the promiscuous tropism of adenoviruses (Ads) is a major concern. Employing tissue specific promoters (TSPs) to restrict transgene expression or viral replication is an effective way to increase specificity towards tumor tissues and to reduce adverse effects in non-target tissues such as the liver. In this regard, candidate breast cancer TSPs include promoters of the genes for the epithelial glycoprotein 2 (EGP-2), cyclooxygenase-2 (Cox-2), α-chemokine SDF-1 receptor (stromal-cell-derived factor, CXCR4), secretory leukoprotease inhibitor (SLPI) and survivin. METHODS: We employed E1-deleted Ads that express the reporter gene luciferase under the control of the promoters of interest. We evaluated this class of vectors in various established breast cancer cell lines, primary breast cancer cells and finally in the most stringent preclinical available substrate system, constituted by precision cut tissue slices of human breast cancer and liver. RESULTS: Overall, the CXCR4 promoter exhibited the highest luciferase activity in breast cancer cell lines, primary breast cancer cells and breast cancer tissue slices. Importantly, the CXCR4 promoter displayed a very low activity in human primary fibroblasts and human liver tissue slices. Interestingly, gene expression profiles correlated with the promoter activities both in breast cancer cell lines and primary breast cancer cells. CONCLUSION: These data suggest that the CXCR4 promoter has an ideal 'breast cancer-on/liver-off' profile, and could, therefore, be a powerful tool in Ad vector based gene therapy or virotherapy of the carcinoma of the breast

    Heritability and Phenotypic Variation of Canine Hip Dysplasia Radiographic Traits in a Cohort of Australian German Shepherd Dogs

    Get PDF
    Canine Hip Dysplasia (CHD) is a common, painful and debilitating orthopaedic disorder of dogs with a partly genetic, multifactorial aetiology. Worldwide, potential breeding dogs are evaluated for CHD using radiographically based screening schemes such as the nine ordinally-scored British Veterinary Association Hip Traits (BVAHTs). The effectiveness of selective breeding based on screening results requires that a significant proportion of the phenotypic variation is caused by the presence of favourable alleles segregating in the population. This proportion, heritability, was measured in a cohort of 13,124 Australian German Shepherd Dogs born between 1976 and 2005, displaying phenotypic variation for BVAHTs, using ordinal, linear and binary mixed models fitted by a Restricted Maximum Likelihood method. Heritability estimates for the nine BVAHTs ranged from 0.14–0.24 (ordinal models), 0.14–0.25 (linear models) and 0.12–0.40 (binary models). Heritability for the summed BVAHT phenotype was 0.30±0.02. The presence of heritable variation demonstrates that selection based on BVAHTs has the potential to improve BVAHT scores in the population. Assuming a genetic correlation between BVAHT scores and CHD-related pain and dysfunction, the welfare of Australian German Shepherds can be improved by continuing to consider BVAHT scores in the selection of breeding dogs, but that as heritability values are only moderate in magnitude the accuracy, and effectiveness, of selection could be improved by the use of Estimated Breeding Values in preference to solely phenotype based selection of breeding animals

    Functional Impairment of Human Myeloid Dendritic Cells during Schistosoma haematobium Infection

    Get PDF
    Chronic Schistosoma infection is often characterized by a state of T cell hyporesponsiveness of the host. Suppression of dendritic cell (DC) function could be one of the mechanisms underlying this phenomenon, since Schistosoma antigens are potent modulators of dendritic cell function in vitro. Yet, it remains to be established whether DC function is modulated during chronic human Schistosoma infection in vivo. To address this question, the effect of Schistosoma haematobium infection on the function of human blood DC was evaluated. We found that plasmacytoid (pDC) and myeloid DC (mDC) from infected subjects were present at lower frequencies in peripheral blood and that mDC displayed lower expression levels of HLA-DR compared to those from uninfected individuals. Furthermore, mDC from infected subjects, but not pDC, were found to have a reduced capacity to respond to TLR ligands, as determined by MAPK signaling, cytokine production and expression of maturation markers. Moreover, the T cell activating capacity of TLR-matured mDC from infected subjects was lower, likely as a result of reduced HLA-DR expression. Collectively these data show that S. haematobium infection is associated with functional impairment of human DC function in vivo and provide new insights into the underlying mechanisms of T cell hyporesponsiveness during chronic schistosomiasis

    American Thyroid Association Guide to Investigating Thyroid Hormone Economy and Action in Rodent and Cell Models

    Get PDF
    Background: An in-depth understanding of the fundamental principles that regulate thyroid hormone homeostasis is critical for the development of new diagnostic and treatment ap-proaches for patients with thyroid disease. Summary: Important clinical practices in use today for the treatment of patients with hypothy-roidism, hyperthyroidism, or thyroid cancer, are the result of laboratory discoveries made by scientists investigating the most basic aspects of thyroid structure and molecular biology. In this document, a panel of experts commissioned by the American Thyroid Association makes a se-ries of recommendations related to the study of thyroid hormone economy and action. These recommendations are intended to promote standardization of study design, which should in turn increase the comparability and reproducibility of experimental findings. Conclusions: It is expected that adherence to these recommendations by investigators in the field will facilitate progress towards a better understanding of the thyroid gland and thyroid hormone dependent processes

    Dutch perfusion incident survey

    No full text
    Background: Cardiopulmonary bypass procedures remain complex, involving many potential risks. Therefore, a nationwide retrospective study was conducted to gain insight into the number of incidents and accidents in Dutch adult perfusion practice. Methods: An anonymous postal survey (85 questions about hardware, disposables, fluids and medication, air emboli, anticoagulation, practice, and safety measures) was sent to all Dutch perfusionists involved in adult cardiovascular perfusion during 2006 and 2007. To guarantee complete anonymity, respondents were asked to return the survey to a notary who discarded personal information. Results: The net response rate was 72% and covered 23,500 perfusions. Individual respondents performed 240 +/- 103 perfusions during the 2-year study period and had 13.8 +/- 8.7 years of practical experience. The incident rate was 1 per 15.6 perfusions and the adverse event rate was 1 per 1,236 perfusions. The three most reported incidents were: (1) persistent inability to raise the activated coagulation time above 400s during perfusion (184 incidents); (2) an allergic or anaphylactic reaction to drugs, fluids, or blood products (114 incidents); and (3) clotting formation in the extracorporeal circuit (74 incidents). Furthermore, pre-bypass safety measures showed no statistically significant association with the reported incidents. Conclusions: In comparison with data from the recent literature, the reported number of incidents is high. Nevertheless, the adverse outcome rate is well matched to other published surveys. The relatively high response rate conveys the impression that the Dutch perfusionist is vigilant and willing to report incidents. Hence, a web-based Dutch perfusion incident registration system is recommended

    Modifying Orthobiological PRP Therapies Are Imperative for the Advancement of Treatment Outcomes in Musculoskeletal Pathologies

    No full text
    Autologous biological cellular preparations have materialized as a growing area of medical advancement in interventional (orthopedic) practices and surgical interventions to provide an optimal tissue healing environment, particularly in tissues where standard healing is disrupted and repair and ultimately restoration of function is at risk. These cellular therapies are often referred to as orthobiologics and are derived from patient’s own tissues to prepare point of care platelet-rich plasma (PRP), bone marrow concentrate (BMC), and adipose tissue concentrate (ATC). Orthobiological preparations are biological materials comprised of a wide variety of cell populations, cytokines, growth factors, molecules, and signaling cells. They can modulate and influence many other resident cells after they have been administered in specific diseased microenvironments. Jointly, the various orthobiological cell preparations are proficient to counteract persistent inflammation, respond to catabolic reactions, and reinstate tissue homeostasis. Ultimately, precisely delivered orthobiologics with a proper dose and bioformulation will contribute to tissue repair. Progress has been made in understanding orthobiological technologies where the safety and relatively easy manipulation of orthobiological treatment tools has been demonstrated in clinical applications. Although more positive than negative patient outcome results have been registered in the literature, definitive and accepted standards to prepare specific cellular orthobiologics are still lacking. To promote significant and consistent clinical outcomes, we will present a review of methods for implementing dosing strategies, using bioformulations tailored to the pathoanatomic process of the tissue, and adopting variable preparation and injection volume policies. By optimizing the dose and specificity of orthobiologics, local cellular synergistic behavior will increase, potentially leading to better pain killing effects, effective immunomodulation, control of inflammation, and (neo) angiogenesis, ultimately contributing to functionally restored body movement patterns

    Platelet Rich Plasma in Orthopedic Surgical Medicine.

    No full text
    There is a global interest in optimizing post-surgical tissue repair strategies, leading to better patient outcomes and fewer complications, most ideally with reduced overall cost. In this regard, in recent years, the interest in autologous biological treatments in orthopedic surgery and sports medicine has increased greatly, and the addition of platelet-rich plasma (PRP) to the surgical armamentarium is of particular note. Unfortunately, the number of PRP preparation devices has also grown immensely over the recent decades, raising meaningful concern for the considerable variation in the qualities of currently available PRP preparations. The lack of consensus on the standardization of PRP preparation and of agreement on condition specific PRP formulations is largely responsible for the sometimes contradictory outcomes in the literature. Furthermore, the full potential of PRP technology, the concept of individualized treatment protocols based on bioformulation options, and platelet dosing, angiogenesis, and antimicrobial and painkilling effects of PRP relevant to orthopedic surgery have rarely been addressed. In this review, we will discuss recent developments regarding PRP preparations and potential therapeutic effects. Additionally, we present a synopsis of several published data regarding PRP applications in orthopedic surgery for treating tendon injuries, inducing bone repair, strengthening spinal fusion outcomes, and supporting major joint replacements
    corecore