152 research outputs found

    Cyclohexenyl nucleic acids: conformationally flexible oligonucleotides

    Get PDF
    Cyclohexenyl nucleic acid (CeNA) is a nucleic acid mimic, where the (deoxy)ribose sugar has been replaced by cyclohexenyl moieties. In order to study the conformation of cyclohexenyl nucleosides by NMR, the HexRot program was developed to calculate conformations from scalar coupling constants of cyclohexenyl compounds, analogous to the methods applied for (deoxy)ribose nucleosides. The conformational equilibria and the values of the thermodynamic parameters are very similar between a cyclohexenyl nucleoside [energy difference between (2)H(3) (N-type) and (2)H(3) (S-type) is 1.8 kJ/mol and equilibrium occurs via the eastern hemisphere with a barrier of 10.9 kJ/mol] and a natural ribose nucleoside (energy difference between N-type and S-type is 2 kJ/mol and equilibrium occurs via the eastern hemisphere with a barrier of 4–20 kJ/mol). The flexibility of the cyclohexenyl nucleoside was demonstrated by the fast equilibrium between two conformational states that was observed in a CeNA-U monomer, combined with the (2)H(3) conformation of the cyclohexene moiety when incorporated into a Dickerson dodecamer and the (2)H(3) conformation when incorporated in a d(5′-GCGT*GCG-3′)/d(5′-CGCACGC-3′) duplex, as determined by the NMR spectroscopy. This represents the first example of a synthetic nucleoside that adopts different conformations when incorporated in different double-stranded DNA sequences

    The naturally occurring N6-threonyl adenine in anticodon loop of Schizosaccharomyces pombe tRNA(i) causes formation of a unique U-turn motif

    Get PDF
    Modified nucleosides play an important role in structure and function of tRNA. We have determined the solution structure of the anticodon stem–loop (ASL) of initiator tRNA of Schizosaccharomyces pombe. The incorporation of N6-threonylcarbamoyladenosine at the position 3′ to the anticodon triplet (t(6)A37) results in the formation of a U-turn motif and enhances stacking interactions within the loop and stem regions (i.e. between A35 and t(6)A37) by bulging out U36. This conformation was not observed in a crystal structure of tRNAi including the same modification in its anticodon loop, nor in the solution structure of the unmodified ASL. A t(6)A modification also occurs in the well studied anti-stem–loop of lys-tRNA(UUU). A comparison of this stem–loop with our structure demonstrates different effects of the modification depending on the loop sequence

    Synthesis of Modified Peptidoglycan Precursor Analogues for the Inhibition of Glycosyltransferase.

    Full text link
    The peptidoglycan glycosyltransferases (GTs) are essential enzymes that catalyze the polymerization of glycan chains of the bacterial cell wall from lipid II and thus constitute a validated antibacterial target. Their enzymatic cavity is composed of a donor site for the growing glycan chain (where the inhibitor moenomycin binds) and an acceptor site for lipid II substrate. In order to find lead inhibitors able to fill this large active site, we have synthesized a series of substrate analogues of lipid I and lipid II with variations in the lipid, the pyrophosphate, and the peptide moieties and evaluated their biological effect on the GT activity of E. coli PBP1b and their antibacterial potential. We found several compounds able to inhibit the GT activity in vitro and cause growth defect in Bacillus subtilis . The more active was C16-phosphoglycerate-MurNAc-(l-Ala-d-Glu)-GlcNAc, which also showed antibacterial activity. These molecules are promising leads for the design of new antibacterial GT inhibitors

    Curing cats with Feline Infectious Peritonitis with an oral multi-component drug containing GS-441524

    Full text link
    Feline infectious peritonitis (FIP) caused by feline coronavirus (FCoV) is a common dis-ease in cats, fatal if untreated, and no effective treatment is currently legally available. The aim of this study was to evaluate efficacy and toxicity of the multi-component drug Xraphconn®^{®} in vitro and as oral treatment in cats with spontaneous FIP by examining survival rate, development of clinical and laboratory parameters, viral loads, anti-FCoV antibodies, and adverse effects. Mass spectrometry and nuclear magnetic resonance identified GS-441524 as an active component of Xraphconn®^{®}. Eighteen cats with FIP were prospectively followed up while being treated orally for 84 days. Values of key parameters on each examination day were compared to values before treatment initiation using linear mixed-effect models. Xraphconn®^{®} displayed high virucidal activity in cell culture. All cats recovered with dramatic improvement of clinical and laboratory parameters and massive reduction in viral loads within the first few days of treatment without serious adverse effects. Oral treatment with Xraphconn®^{®} containing GS-441524 was highly effective for FIP without causing serious adverse effects. This drug is an excellent option for the oral treatment of FIP and should be trialed as potential effective treatment option for other severe coronavirus-associated diseases across species

    Common variable immunodeficiency in two kindreds with heterogeneous phenotypes caused by novel heterozygous NFKB1 mutations

    Get PDF
    NFKB1 haploinsufficiengcy was first described in 2015 in three families with common variable immunodeficiency (CVID), presenting heterogeneously with symptoms of increased infectious susceptibility, skin lesions, malignant lymphoproliferation and autoimmunity. The described mutations all led to a rapid degradation of the mutant protein, resulting in a p50 haploinsufficient state. Since then, more than 50 other mutations have been reported, located throughout different domains of NFKB1 with the majority situated in the N-terminal Rel homology domain (RHD). The clinical spectrum has also expanded with possible disease manifestations in almost any organ system. In silico prediction tools are often used to estimate the pathogenicity of NFKB1 variants but to prove causality between disease and genetic findings, further downstream functional validation is required. In this report, we studied 2 families with CVID and two novel variants in NFKB1 (c.1638-2A>G and c.787G>C). Both mutations affected mRNA and/or protein expression of NFKB1 and resulted in excessive NLRP3 inflammasome activation in patient macrophages and upregulated interferon stimulated gene expression. Protein-protein interaction analysis demonstrated a loss of interaction with NFKB1 interaction partners for the p.V263L mutation. In conclusion, we proved pathogenicity of two novel variants in NFKB1 in two families with CVID characterized by variable and incomplete penetrance.Peer reviewe

    Common variable immunodeficiency in two kindreds with heterogeneous phenotypes caused by novel heterozygous NFKB1 mutations

    Get PDF
    NFKB1 haploinsufficiengcy was first described in 2015 in three families with common variable immunodeficiency (CVID), presenting heterogeneously with symptoms of increased infectious susceptibility, skin lesions, malignant lymphoproliferation and autoimmunity. The described mutations all led to a rapid degradation of the mutant protein, resulting in a p50 haploinsufficient state. Since then, more than 50 other mutations have been reported, located throughout different domains of NFKB1 with the majority situated in the N-terminal Rel homology domain (RHD). The clinical spectrum has also expanded with possible disease manifestations in almost any organ system. In silico prediction tools are often used to estimate the pathogenicity of NFKB1 variants but to prove causality between disease and genetic findings, further downstream functional validation is required. In this report, we studied 2 families with CVID and two novel variants in NFKB1 (c.1638-2A>G and c.787G>C). Both mutations affected mRNA and/or protein expression of NFKB1 and resulted in excessive NLRP3 inflammasome activation in patient macrophages and upregulated interferon stimulated gene expression. Protein-protein interaction analysis demonstrated a loss of interaction with NFKB1 interaction partners for the p.V263L mutation. In conclusion, we proved pathogenicity of two novel variants in NFKB1 in two families with CVID characterized by variable and incomplete penetrance.Peer reviewe

    Synthesis, Structure–Activity Relationships, and Antiviral Profiling of 1-Heteroaryl-2-Alkoxyphenyl Analogs as Inhibitors of SARS-CoV-2 Replication

    Get PDF
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, has led to a pandemic, that continues to be a huge public health burden. Despite the availability of vaccines, there is still a need for small-molecule antiviral drugs. In an effort to identify novel and drug-like hit matter that can be used for subsequent hit-to-lead optimization campaigns, we conducted a high-throughput screening of a 160 K compound library against SARS-CoV-2, yielding a 1-heteroaryl-2-alkoxyphenyl analog as a promising hit. Antiviral profiling revealed this compound was active against various beta-coronaviruses and preliminary mode-of-action experiments demonstrated that it interfered with viral entry. A systematic structure–activity relationship (SAR) study demonstrated that a 3- or 4-pyridyl moiety on the oxadiazole moiety is optimal, whereas the oxadiazole can be replaced by various other heteroaromatic cycles. In addition, the alkoxy group tolerates some structural diversity

    Structural biology in drug development

    No full text
    Structural biologists focus on the structure of biomolecules. Several techniques are available to study the structure adopted by a biomolecule and unravel how this structure is related to its constitution and function. For their biological role in a functioning cell or organism, biomolecules interact with each other and/or rather small molecules in their environment. Drugs can exploit interaction with biomolecules to manipulate their biological function to obtain a therapeutic effect. Structure determination of biomolecules that (could) serve as therapeutic target is an important starting point in rational drug design. Once the structure of a biological target is known, a potential binding site for drugs and possible interactions at this site have to be identified. In the stage of drug design this information is a valuable input for modeling experiments. They can virtually scan libraries of compounds by docking them into the binding site. This strategy ranks potential ligands that can be chemically modified to optimize their interaction at the binding site ('lead optimization') in order to improve affinity and selectivity for the biomolecular target. Modeling can also be used to virtually 'build' new molecules starting from possible interactions and shape of the target binding site ('de novo design'). Structural biology can contribute in different stages of drug development to direct the process or optimize existing compounds.status: publishe
    corecore