122 research outputs found

    Corn and wheat residue management effects on greenhouse gas emissions in the Mid-Atlantic USA

    Get PDF
    Greenhouse gas (GHG) emissions from crop residue management have been studied extensively, yet the effects of harvesting more than one crop residue in a rotation have not been reported. Here, we measured the short-term changes in methane (CH4), nitrous oxide (N2O), and carbon dioxide (CO2) emissions in response to residue removal from continuous corn (Zea mays L.) (CC) and corn-wheat (Triticum aestivum L.)-soybean (Glycine max L. Merr.) (CWS) rotations in the Mid-Atlantic USA. A first experiment retained five corn stover rates (0, 3.33, 6.66, 10, and 20 Mg ha-1) in a continuous corn (CC) in Blacksburg, VA, in 2016 and 2017. Two other experiments, initiated during the wheat and corn phases of the CWS rotation in New Kent, VA, utilized a factorial combination of retained corn (0, 3.33, 6.66, and 10.0 Mg ha-1) and wheat residue (0, 1, 2, and 3 Mg ha-1). Soybean residue was not varied. Different crop retention rates did not affect CO2 fluxes in any of the field studies. In Blacksburg, retaining 5 Mg ha-1 stover or more increased CH4 and N2O emissions by ~25%. Maximum CH4 and N2O fluxes (4.16 and 5.94 mg m-2 day-1) occurred with 200% (20 Mg ha-1) retention. Two cycles of stover management in Blacksburg, and one cycle of corn or wheat residue management in New Kent did not affect GHG fluxes. This study is the first to investigate the effects of crop residue on GHG emissions in a multi-crop system in humid temperate zones. Longer-term studies are warranted to understand crop residue management effects on GHG emissions in these systems

    Perennial Forages as Second Generation Bioenergy Crops

    Get PDF
    The lignocellulose in forage crops represents a second generation of biomass feedstock for conversion into energy-related end products. Some of the most extensively studied species for cellulosic feedstock production include forages such as switchgrass (Panicum virgatum L.), reed canarygrass (Phalaris arundinacea L.), and alfalfa (Medicago sativa L.). An advantage of using forages as bioenergy crops is that farmers are familiar with their management and already have the capacity to grow, harvest, store, and transport them. Forage crops offer additional flexibility in management because they can be used for biomass or forage and the land can be returned to other uses or put into crop rotation. Estimates indicate about 22.3 million ha of cropland, idle cropland, and cropland pasture will be needed for biomass production in 2030. Converting these lands to large scale cellulosic energy farming could push the traditional forage-livestock industry to ever more marginal lands. Furthermore, encouraging bioenergy production from marginal lands could directly compete with forage-livestock production

    A multiple species approach to biomass production from native herbaceous perennial feedstocks

    Full text link

    The challenge for the soil science community to contribute to the implementation of the UN Sustainable Development Goals

    No full text
    Seventeen Sustainable Development Goals (SDGs), adopted by 193 Governments at the General Assembly of the United Nations in 2015 to be achieved by 2030, present a roadmap to a sustainable future and a challenge to the science community. To guide activities and check progress, targets and indicators have been and are still being defined. The soil science community has published documents that clearly and convincingly demonstrate the primary importance of soil for SDGs addressing hunger, water quality, climate mitigation and biodiversity preservation and secondary relevance for several other SDGs. Soil scientists only marginally participated in the SDG discussions and are currently only peripherally engaged in discussions on targets or indicators. Agreement on several soil-related indicators has still not been achieved. Involvement of soil scientists in SDG-based studies is desirable to both develop solutions and to increase the visibility of the soils’ profession. Possible contributions of soil science to defining indicators for the SDGs are explored in this paper. We advocate for the pragmatic use of soil-water-atmosphere-plant simulation models and available soil surveys and soil databases where “representative” soil profiles for mapping units (genetically defined genoforms) are functionally expressed in terms of several phenoforms reflecting effects of different types of soil use and management that strongly affect functionality.JRC.D.3-Land Resource

    Reclaimed Water for Turfgrass Irrigation

    No full text
    Sustainable irrigation of turfgrass grown on coarse-textured soils with reclaimed water must avoid detrimental effects of soluble salts on plant growth and soil quality and groundwater enrichment of nitrogen (N) and phosphorus (P). The purpose of this study was (1) to investigate the effects of irrigating with municipal reclaimed water containing higher concentrations of soluble salts than potable water on turfgrass growth and quality and (2) to compare the effects of reclaimed and potable water on turfgrass assimilation and leaching of N and P. A sand-based medium plumbed to supply potable and reclaimed water and instrumented with lysimeters to collect leachate was planted with hybrid bermudagrass (Cynodon dactylon x Cynodon transvaalensis var. Tifsport) and creeping bentgrass (Agrostis stolonifera var. L-93). Both species produced high quality turfgrass with the reclaimed water. Although both grasses are moderately or highly salt tolerant when fully established, the bermudagrass growth and quality were reduced by the reclaimed water upon breaking dormancy, and its N use during this period was reduced. Continuous use of reclaimed water of the quality used in the study poses a potential soil Na accumulation problem. Both turfgrasses assimilated high amounts of N and P with minimal potential losses to groundwater

    Using Hyperspectral and Multispectral Indices to Detect Water Stress for an Urban Turfgrass System

    No full text
    Spectral reflectance measurements collected from hyperspectral and multispectral radiometers have the potential to be a management tool for detecting water and nutrient stress in turfgrass. Hyperspectral radiometers collect hundreds of narrowband reflectance data compared to multispectral radiometers that collect three to ten broadband reflectance data for a cheaper cost. Spectral reflectance data have been used to create vegetation indices such as the normalized difference vegetation index (NDVI) and the simple ratio vegetation index (RVI) to assess crop growth, density, and fertility. Other indices such as the water band index (WBI) (narrowband index) and green-to-red ratio index (GRI) (both broadband and narrowband index) have been proposed to predict soil moisture status in turfgrass systems. The objective of this study was to compare the value of multispectral and hyperspectral radiometers to assess soil volumetric water content (VWC) and tall fescue (Festuca arundinacea Schreb.) responses. The multispectral radiometer VI had the strongest relationships to turfgrass quality, biomass, and tissue N accumulation during the trial period (April 2017–August 2018). Soil VWC had the strongest relationship to WBI (r = 0.60), followed by GRI and NDVI (both r = 0.54) for the 0% evapotranspiration (ET). Nonlinear regression showed strong relationships at high water stress periods in each year for WBI (r = 0.69–0.79), GRI (r = 0.64–0.75), and NDVI (r = 0.58–0.79). Broadband index data collected using a mobile multispectral sensor is a cheaper alternative to hyperspectral radiometry and can provide better spatial coverage
    corecore