2,196 research outputs found

    The interrelationship between phagocytosis, autophagy and formation of neutrophil extracellular traps following infection of human neutrophils by Streptococcus pneumoniae

    Get PDF
    Neutrophils play an important role in the innate immune response to infection with Streptococcus pneumoniae, the pneumococcus. Pneumococci are phagocytosed by neutrophils and undergo killing after ingestion. Other cellular processes may also be induced, including autophagy and the formation of neutrophil extracellular traps (NETs), which may play a role in bacterial eradication. We set out to determine how these different processes interacted following pneumococcal infection of neutrophils, and the role of the major pneumococcal toxin pneumolysin in these various pathways. We found that pneumococci induced autophagy in neutrophils in a type III phosphatidylinositol-3 kinase dependent fashion that also required the autophagy gene Atg5. Pneumolysin did not affect this process. Phagocytosis was inhibited by pneumolysin but enhanced by autophagy, while killing was accelerated by pneumolysin but inhibited by autophagy. Pneumococci induced extensive NET formation in neutrophils that was not influenced by pneumolysin but was critically dependent on autophagy. While pneumolysin did not affect NET formation, it had a potent inhibitory effect on bacterial trapping within NETs. These findings show a complex interaction between phagocytosis, killing, autophagy and NET formation in neutrophils following pneumococcal infection that contribute to host defence against this pathogen

    IL-17 can be protective or deleterious in murine pneumococcal pneumonia

    Get PDF
    Streptococcus pneumoniae is the major bacterial cause of community-acquired pneumonia, and the leading agent of childhood pneumonia deaths worldwide. Nasal colonization is an essential step prior to infection. The cytokine IL-17 protects against such colonization and vaccines that enhance IL-17 responses to pneumococcal colonization are being developed. The role of IL-17 in host defence against pneumonia is not known. To address this issue, we have utilized a murine model of pneumococcal pneumonia in which the gene for the IL-17 cytokine family receptor, Il17ra, has been inactivated. Using this model, we show that IL-17 produced predominantly from γδ T cells protects mice against death from the invasive TIGR4 strain (serotype 4) which expresses a relatively thin capsule. However, in pneumonia produced by two heavily encapsulated strains with low invasive potential (serotypes 3 and 6B), IL-17 significantly enhanced mortality. Neutrophil uptake and killing of the serotype 3 strain was significantly impaired compared to the serotype 4 strain and depletion of neutrophils with antibody enhanced survival of mice infected with the highly encapsulated SRL1 strain. These data strongly suggest that IL-17 mediated neutrophil recruitment to the lungs clears infection from the invasive TIGR4 strain but that lung neutrophils exacerbate disease caused by the highly encapsulated pneumococcal strains. Thus, whilst augmenting IL-17 immune responses against pneumococci may decrease nasal colonization, this may worsen outcome during pneumonia caused by some strains

    A study and experiment plan for digital mobile communication via satellite

    Get PDF
    The viability of mobile communications is examined within the context of a frequency division multiple access, single channel per carrier satellite system emphasizing digital techniques to serve a large population of users. The intent is to provide the mobile users with a grade of service consistant with the requirements for remote, rural (perhaps emergency) voice communications, but which approaches toll quality speech. A traffic model is derived on which to base the determination of the required maximum number of satellite channels to provide the anticipated level of service. Various voice digitalization and digital modulation schemes are reviewed along with a general link analysis of the mobile system. Demand assignment multiple access considerations and analysis tradeoffs are presented. Finally, a completed configuration is described

    An a priori investigation of astrophysical false positives in ground-based transiting planet surveys

    Full text link
    Astrophysical false positives due to stellar eclipsing binaries pose one of the greatest challenges to ground-based surveys for transiting Hot Jupiters. We have used known properties of multiple star systems and Hot Jupiter systems to predict, a priori, the number of such false detections and the number of genuine planet detections recovered in two hypothetical but realistic ground-based transit surveys targeting fields close to the galactic plane (b~10 degrees): a shallow survey covering a magnitude range 10<V<13, and a deep survey covering a magnitude range 15<V<19. Our results are consistent with the commonly-reported experience of false detections outnumbering planet detections by a factor of ~10 in shallow surveys, while in our synthetic deep survey we find ~1-2 false detections for every planet detection. We characterize the eclipsing binary configurations that are most likely to cause false detections and find that they can be divided into three main types: (i) two dwarfs undergoing grazing transits, (ii) two dwarfs undergoing low-latitude transits in which one component has a substantially smaller radius than the other, and (iii) two eclipsing dwarfs blended with one or more physically unassociated foreground stars. We also predict that a significant fraction of Hot Jupiter detections are blended with the light from other stars, showing that care must be taken to identify the presence of any unresolved neighbors in order to obtain accurate estimates of planetary radii. This issue is likely to extend to terrestrial planet candidates in the CoRoT and Kepler transit surveys, for which neighbors of much fainter relative brightness will be important.Comment: 33 pages, 7 figures, 4 tables; To be published in The Astrophysical Journa

    Cognitive Biases about Climate Variability in Smallholder Farming Systems in Zambia

    Get PDF
    Given the varying manifestations of climate change over time and the influence of climate perceptions on adaptation, it is important to understand whether farmer perceptions match patterns of environmental change from observational data. We use a combination of social and environmental data to understand farmer perceptions related to rainy season onset. Household surveys were conducted with 1171 farmers across Zambia at the end of the 2015/16 growing season eliciting their perceptions of historic changes in rainy season onset and their heuristics about when rain onset occurs. We compare farmers' perceptions with satellite-gauge-derived rainfall data from the Climate Hazards Group Infrared Precipitation with Station dataset and hyper-resolution soil moisture estimates from the HydroBlocks land surface model. We find evidence of a cognitive bias, where farmers perceive the rains to be arriving later, although the physical data do not wholly support this. We also find that farmers' heuristics about rainy season onset influence maize planting dates, a key determinant of maize yield and food security in sub-Saharan Africa. Our findings suggest that policy makers should focus more on current climate variability than future climate change.National Science Foundation [SES-1360463, BCS-1115009, BCS-1026776]6 month embargo; published online: 29 March 2019This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    (G)hosting television: Ghostwatch and its medium

    Get PDF
    This article’s subject is Ghostwatch (BBC, 1992), a drama broadcast on Halloween night of 1992 which adopted the rhetoric of live non-fiction programming, and attracted controversy and ultimately censure from the Broadcasting Standards Council. In what follows, we argue that Ghostwatch must be understood as a televisually-specific artwork and artefact. We discuss the programme’s ludic relationship with some key features of television during what Ellis (2000) has termed its era of ‘availability’, principally liveness, mass simultaneous viewing, and the flow of the television super-text. We trace the programme’s television-specific historicity whilst acknowledging its allusions and debts to other media (most notably film and radio). We explore the sophisticated ways in which Ghostwatch’s visual grammar and vocabulary and deployment of ‘broadcast talk’ (Scannell 1991) variously ape, comment upon and subvert the rhetoric of factual programming, and the ends to which these strategies are put. We hope that these arguments collectively demonstrate the aesthetic and historical significance of Ghostwatch and identify its relationship to its medium and that medium’s history. We offer the programme as an historically-reflexive artefact, and as an exemplary instance of the work of art in television’s age of broadcasting, liveness and co-presence

    Fluctuation Theorems for Entropy Production and Heat Dissipation in Periodically Driven Markov Chains

    Get PDF
    Asymptotic fluctuation theorems are statements of a Gallavotti-Cohen symmetry in the rate function of either the time-averaged entropy production or heat dissipation of a process. Such theorems have been proved for various general classes of continuous-time deterministic and stochastic processes, but always under the assumption that the forces driving the system are time independent, and often relying on the existence of a limiting ergodic distribution. In this paper we extend the asymptotic fluctuation theorem for the first time to inhomogeneous continuous-time processes without a stationary distribution, considering specifically a finite state Markov chain driven by periodic transition rates. We find that for both entropy production and heat dissipation, the usual Gallavotti-Cohen symmetry of the rate function is generalized to an analogous relation between the rate functions of the original process and its corresponding backward process, in which the trajectory and the driving protocol have been time-reversed. The effect is that spontaneous positive fluctuations in the long time average of each quantity in the forward process are exponentially more likely than spontaneous negative fluctuations in the backward process, and vice-versa, revealing that the distributions of fluctuations in universes in which time moves forward and backward are related. As an additional result, the asymptotic time-averaged entropy production is obtained as the integral of a periodic entropy production rate that generalizes the constant rate pertaining to homogeneous dynamics
    • …
    corecore