

University of Tennessee, Knoxville Trace: Tennessee Research and Creative Exchange

Bulletins

AgResearch

10-1991

Effect of Residual and Fertilizer Phosphorus and Potassium on Yields of Corn, Soybeans, and Cotton Grown on Several Tennessee Soils

University of Tennessee Agricultural Experiment Station

W. L. Parks

Robert D. Freeland

Reid Evans

Lawson Safley

See next page for additional authors

Follow this and additional works at: http://trace.tennessee.edu/utk_agbulletin Part of the <u>Agriculture Commons</u>

Recommended Citation

University of Tennessee Agricultural Experiment Station; Parks, W. L.; Freeland, Robert D.; Evans, Reid; Safley, Lawson; McCutchen, Tom; and Smith, Marshall, "Effect of Residual and Fertilizer Phosphorus and Potassium on Yields of Corn, Soybeans, and Cotton Grown on Several Tennessee Soils" (1991). *Bulletins.* http://trace.tennessee.edu/utk_agbulletin/446

The publications in this collection represent the historical publishing record of the UT Agricultural Experiment Station and do not necessarily reflect current scientific knowledge or recommendations. Current information about UT Ag Research can be found at the UT Ag Research website. This Bulletin is brought to you for free and open access by the AgResearch at Trace: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Bulletins by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information, please contact trace@utk.edu.

Authors

University of Tennessee Agricultural Experiment Station, W. L. Parks, Robert D. Freeland, Reid Evans, Lawson Safley, Tom McCutchen, and Marshall Smith

W. L. Parks Robert D. Freeland Reid Evans Lawson Safley Tom McCutchen Marshall Smith

The University of Tennessee Agricultural Experiment Station Knoxville, Tennessee Don O. Richardson, Dean

EFFECT OF RESIDUAL AND FERTILIZER PHOSPHORUS AND POTASSIUM ON YIELDS OF CORN, SOYBEANS, AND COTTON GROWN ON SEVERAL TENNESSEE SOILS

W. L. Parks Robert D. Freeland Reid Evans Lawson Safley Tom McCutchen Marshall Smith

Bulletin 667, October 1991 The University of Tennessee Agricultural Experiment Station Knoxville, Tennessee Don O. Richardson, Dean

W. L. PARKS is a professor emeritus of Plant and Soil Science, the University of Tennessee. ROBERT D. FREELAND is Superintendent at the Plateau Experiment Station, Crossville. REID EVANS is a former graduate research assistant at the Middle Tennessee Experiment Station, Spring Hill. LAWSON SAFLEY is a former Superintent at the Highland Rim Experiment Station, Springfield. The late TOM MCCUTCHEN was Superintendent at the Milan Experiment Station. MARSHALL SMITH is a research associate at the Ames Plantation, Grand Junction.

TABLE OF CONTENTS

List o	of Tab	les and Figuresvi
Mate	rials a	and Methods1
A.	Effect and s	et of initial and annual rates of P_2O_5 and K_2O on corn yields oil test values on a Hartsells at the Plateau Experiment Station2
	1. 2.	Corn Yields
B.	Effect and s Expe	et of initial and annual rates of P_2O_5 and K_2O on corn yields to il test values on a Dickson soil at the Highland Rim riment Station
	1. 2.	Corn Yields
C.	Effect soil t Tenn	ct of initial and annual K ₂ O applications on corn yields and est values on the high phosphate Maury soil at the Middle lessee Experiment Station13
	1. 2.	Corn Yields
D.	Effect soybe Expe	et of initial and annual applications of P_2O_5 and K_2O on ean yields and soil test values on a Grenada soil at the Milan riment Station
	1. 2.	Soybean Yields
E.	Effect and s	ct of initial and annual rates of P_2O_5 and K_2O on cotton yields soil test values on a Loring soil at Ames Plantation20
	1. 2.	Cotton Yields
Sum	mary.	

LIST OF TABLES AND FIGURES

Table		Page
1	Range of soil P and K test levels for low-, medium-, and high-testing soils	2
2	Corn yields on a Hartsells soil at the Plateau Experiment Station as affected by initial and annual applications of P_2O_5 and K_2O	3
3	Soil test changes over time as affected by initial and annual applications of P_2O_5 and K_2O on a Hartsells soil at the Plateau Experiment Station	6
4	Corn yields on a Dickson soil at the Highland Rim Experiment Station as affected by initial and annual applications of P_2O_5 and K_2O	10
5	Soil test changes over time as affected by initial and annual applications of P_2O_5 and K_2O on a Dickson soil at the Highland Rim Experiment Station	12
6	Corn yields on a Maury soil at the Middle Tennessee Experiment Station as affected by initial and annual applications of K_2O	14
7	Soil test changes over time as affected by initial and annual applications of K_2O on a Maury Soil by the Middle Tennessee Experiment Station	15
8	Soybean yields on a Grenada soil at the Milan Experiment Station as affected by initial and annual applications of P_2O_5 and K_2O	17
9	Soil test changes over time as affected by initial and annual applications of P_2O_5 and K_2O on a Grenada soil at the Milan Experiment Station	19
10	Cotton yields on a Loring soil at Ames Plantation as affected by initial and annual applications of P_2O_5 and K_2O	21

LIST OF TABLES AND FIGURES (cont'd)

Table		Page
11	Soil test changes over time as affected by initial and annual applications of P_2O_5 and K_2O on a Loring soil at Ames Plantation	24
Figure		
1	Average corn yield obtained for different soil test levels of P and K on a Hartsells soil	5
2	Soil test P changes over time for 1 annual and 5 residual phosphate treatments	7
3	Soil test K changes over time for 1 annual and 5 residual potash treatments	8
4	Average corn yields obtained for different soil test levels of P and K on a Dickson soil	11
5	Average soybean yields obtained at different soil test levels of P and K on a Grenada soil	18
6	Average seed cotton yields obtained at different soil test levels of P and K on a Loring soil	23
7	The residual soil test values for 5 rates of P_2O_5 applied before each of the 1974, 1976, and 1978 crop years	25
8	The residual soil test values for 5 rates of K_2O applied before each of the 1974, 1976, and 1978 crop years	26

Effect of Residual and Fertilizer Phosphorus and Potassium on Yields of Corn, Soybeans, and Cotton Grown on Several Tennessee Soils¹

W. L. Parks, Robert D. Freeland, Reid Evans, Lawson Safley, Tom McCutchen, and Marshall Smith

The soils in Tennessee differ greatly in their chemical and physical properties. Some soils contain considerable amounts of phosphorus (P) and potassium (K), while others may contain only small amounts of these two essential plant nutrients. The level of these nutrients in a given soil is generally determined by the parent material, the degree of soil development, the fertilization history, the cropping system used, and the soil's relative position on the landscape. The crop yield potential of a soil is affected by several factors, including the residual fertility level.

It is essential that farm managers know the crop yield potential that a given soil test value will produce so that management decisions can be made during periods of a fertilizer shortage and periods of limited farm capital for purchase of fertilizers. It is also desirable to know how much fertilizer P_2O_5 or K_2O should be applied to a given soil to significantly raise the soil test level and how long a one-time fertilizer application at a high rate will maintain a desirable soil test level in addition to sustaining crop yield.

To better address these concerns, 7-year field fertilizer experiments involving corn grown on Hartsells, Maury, and Dickson soils; soybeans grown on a Grenada soil; and cotton grown on a Loring soil were initiated in 1974.

Materials and Methods

Conventional seedbed preparation was used for all crops; fertilizers were applied broadcast and disked into the soil before planting. Forty-inch rows were used for all crops. The corn variety was Pioneer Brand 3147. Forrest soybeans were used the first 3 years and Bedford soybeans were used during the last 4 years. The cotton variety was Hancock. In these experiments, P_2O_5 or K_2O was applied initially at several rates, with no subsequent P_2O_5 or K_2O being applied over the 7-crop-year period. In the treatments evaluating P_2O_5 , a maintenance rate of K_2O was applied each year. Likewise, a maintenance rate of P_2O_5 was applied to the treatments evaluating K_2O . Additional fertilizer treatments were included at

¹ Research partially supported by TVA Agreement No. Tenn 1131-93.

each location where no P_2O_5 or K_2O , only P_2O_5 , only K_2O , and both P_2O_5 and K_2O were applied each year. All fertilizer treatments in experiments involving corn and cotton received 120 and 60 pounds of nitrogen per acre per year, respectively, while no nitrogen was applied to soybeans.

Soil samples (0 to 6 inches) were taken from each experimental plot before any fertilizer application and once each year during the 7 years of the experiment. These samples were tested by the University of Tennessee Soil Testing Laboratory using 1% $(NH_4)_2SO_4$ in 0.05N H_2SO_4 extracting solution, with a 1 to 4 soil to solution ratio. The resulting P and K soil test values obtained may be classed as low, medium, or high levels as indicated in Table 1.

Nutrient	Soil Test Level								
	Low	Medium	High						
		lb/Acre							
Phosphorus	0 to 15	16 to 25	26 and above						
Potassium	0 to 110	120 to 190	200 and above						

Table 1. Range of soil P and K test levels for low-, medium-, and high-testing soils.

A. Effect of initial and annual rates of P₂O₅ and K₂O on corn yields and soil test values on a Hartsells soil at the Plateau Experiment Station.

1. Corn Yields

Corn yields from initial and annual applications of P_2O_5 and/or K_2O are summarized in **Table 2**. Initial P_2O_5 application rates ranged from 0 to 240 pounds per acre. The yield for these treatments over the 7-year period, with annual applications of 120 pounds N and 60 pounds K_2O per acre with no additional P_2O_5 , averaged 119 bushels per acre. The highest yields produced were in 1974 and the lowest in 1980. No significant yield differences among the initial P_2O_5 treatments were observed during any year or for the 7-year average of the experiment.

Initial K_2O applications ranged from 0 to 240 pounds per acre. The yield over the 7-year period, with annual applications of 120 pounds N and 60 pounds P_2O_5 per acre but with no additional K_2O , averaged 91 bushels per acre. No significant yield differences among the initial K_2O treatments were observed

Fertilizatio	on (lb/A)									
Initial	Annual	1974	1975	1976	1977	1978	1979	1980	7-yr. av.	
N-P2O5-K2O	N-P ₂ O ₅ -K ₂ O				-Bushe	els per a	icre			
			En	fect of I	nitial F	205 A	pplicat	ions		
120-0-60 120-30-60 120-60-60 120-120-60 120-240-60	120-0-60 120-0-60 120-0-60 120-0-60 120-0-60	148 147 152 155 154	152 153 143 156 151	145 157 145 152 158	106 114 104 109 116	100 102 96 104 99	119 111 118 116 122	52 62 51 52 58	117 121 116 120 122	
	LSD(.05)	N.S.	N.S.	N.S.	N.S.	N.S.	N.S.	N.S.	N.S.	
			Ef	fect of I	nitial H	К ₂ О Ар	plicati	ons		
120-60-0 120-60-30 120-60-60 120-60-120 120-60-240	120-60-0 120-60-0 120-60-0 120-60-0 120-60-0	127 126 126 137 132	110 104 106 123 106	113 99 114 110 107	76 69 80 74 78	79 82 87 85 88	98 97 106 101 103	29 25 34 32 24	91 86 93 95 91	
	LSD(.05)	N.S.	N.S.	N.S.	N.S.	N.S.	N.S.	N.S.	N.S.	
			Effe	ct of A	nnual I	P ₂ O ₅ A	pplicat	ions		
120-0-0 120-60-0	120-0-0 120-60-0	136 127	106 110	118 113	81 76	95 79	103 98	35 29	96 91	
	LSD(.05)	N.S.	N.S.	N.S.	N.S.	N.S.	N.S.	N.S.	N.S.	
			Eu	ect of A	nnual	K ₂ O A	pplicat	ions		
120-0-0 120-0-60	120-0-0 120-0-60	136 148	106 152	118 145	81 106	95 100	103 119	35 52	96 117	
	LSD(.05)	N.S.	17	N.S.	N.S.	N.S.	N.S.	N.S.	N.S.	
			Effec	t of P2	O ₅ and	к ₂ 0 А	pplica	tions		
120-0-0 120-60-60	120-0-0 120-60-60 LSD(.05)	136 148 N S	106 143 34	118 150 N S	81 104 N S	95 105 7	102 113 N S	35 57 N S	96 117 17	
	250(.05)	14.0.	51	14.0.	11.0.	,	14.0.	14.0.	1	

Table 2. Corn yields on a Hartsells soil at the Plateau Experiment Station as affected by initial and annual applications of P_2O_5 and K_2O .

during any year or for the 7-year average.

Annual applications of 60 pounds P_2O_5 per acre showed no significant yield response for any year, or for the 7-year average. An annual application of 60 pounds K_2O per acre resulted in a significant yield increase in 1975, but not for the 7-year average. Annual applications of 60 pounds P_2O_5 and K_2O per acre resulted in significant yield increases in 2 of the 7 years, and for the 7-year average.

Figure 1 shows the corn isoyields for the different soil test P and K values obtained during the experiment. With low soil test P values around 15 to 16 and soil test K values around 130 to 142, a corn yield of 80 bushels per acre was obtained. However, on the higher end of soil test levels with soil K values around 285 to 300 and soil P values around 27 to 40, a corn yield of 112 bushels per acre was obtained. These ranges of isoyields represent corn yields expected on the Hartsells soil with adequate nitrogen, during climate conditions similar to those occurring during the 7-year experiment period.

2. Soil Test Values

Soil test values reported in **Table 3** are means for individual treatments by year. The soil pH was between 5.5 and 6.0 and generally remained in this range over the 7-year period, although 4 of the treatments dropped to pH 5.3.

The soil test P values were high (above 26 pounds per acre) prior to the initiation of P_2O_5 treatments. The zero P_2O_5 treatment dropped to medium after the third crop year and remained at a medium level for the rest of the experiment. After 5 years, soil test P values were medium for all initial P_2O_5 treatments.

For the treatments receiving no P_2O_5 during the 7 years, the soil test P values dropped to about the middle of the medium soil test range. The treatments receiving an annual application of 60 pounds P_2O_5 per acre remained at a high soil test level, but decreased some over the 7-year period. The rates of decline of the soil test P values for the different treatments ranged from 1.2 to 2.5 pounds P per acre per year and are illustrated in Figure 2.

The soil test K values for the initial K_2O treatments were high (above 200 pounds per acre) at the start of the experiment and remained high for the first 2 years. Soil test values of the O and 30 pounds K_2O per acre treatments dropped to medium after 2 years, and after 5 years, all initial K_2O treatments tested medium. Generally, annual applications of 60 pounds K_2O per acre maintained high soil test K values. However, for the treatments receiving no K_2O during the 7 years, the soil test K values dropped to about the middle of the medium soil test range. The rates of decline of the soil test K values ranged from 9 to 16 pounds K per acre per year and are illustrated in Figure 3.

Figure 1. Average corn yields obtained for different soil test levels of P and K on a Hartsells soil

S

Fertilization	(lb/A)									
Initial	Annual	Spr. 1974	Spr. 1975	Spr. 1976	Spr. 1977	Spr. 1978	Spr. 1979	Spr. 1980		
			1	A. Soil	Test Pl	ospho	rus			
N-P ₂ O ₅ -K ₂ O	$N-P_2O_5-K_2O$	*********		Poun	ds of P	Per Ac	re			
			Effect	of Init	ial P ₂ C	o ₅ Appl	lication	IS		
120-0-60 120-30-60 120-60-60 120-120-60 120-240-60	120-0-60 120-0-60 120-0-60 120-0-60 120-0-60	37 39 40 32 36	32 26 33 35 32	27 30 28 29 37	25 29 35 31 35	26 26 26 26 29	23 23 23 24 25	22 22 21 22 26		
			Effect	t of Init	tial K ₂ 0) Appli	cation	5		
120-60-0 120-60-30 120-60-60 120-60-120 120-60-240	120-60-0 120-60-0 120-60-0 120-60-0 120-60-0	27 27 26 29 34	27 28 24 28 27	26 24 25 28 31	28 30 31 30 34	27 28 27 29 35	25 28 21 28 26	29 35 29 32 36		
		Effect of Annual P_2O_5 and K_2O Applications								
120-0-0 120-60-0 120-0-60 120-60-60	120-0-0 120-60-0 120-0-60 120-60-60	24 27 37 46	29 27 32 36	20 26 27 31	27 28 25 39	21 27 26 33	16 25 23 28	20 29 22 31		
			Ŧ	B. Soil	Test Po	tassiur	n			
N-P2O5-K2O	N-P2O5-K2O			Pound	s of K I	Per Acr	e			
			Effect	of Initi	al P ₂ O	5 Appli	cations	i		
120-0-60 120-30-60 120-60-60 120-120-60 120-240-60	120-0-60 120-0-60 120-0-60 120-0-60 120-0-60	265 318 335 293 265	235 205 243 243 253	220 238 240 218 230	245 310 278 285 288	233 248 240 243 245	280 273 273 263 270	258 265 253 255 275		
			Effect	of Init	ial K ₂ C) Appli	cations	i i		
120-60-0 120-60-30 120-60-60 120-60-120 120-60-240	120-60-0 120-60-0 120-60-0 120-60-0 120-60-0	238 210 265 243 235	213 235 250 238 250	183 178 238 228 228	195 213 253 223 243	180 155 218 180 198	163 163 180 173 173	160 148 200 180 180		
		Effec	t of An	nual P ₂	205 an	d K ₂ O	Applic	ations		
120-0-0 120-60-0 120-0-60 120-60-60	120-0-0 120-60-0 120-0-60 120-60-60	228 238 265 265	238 213 235 273	163 183 220 243	248 195 245 298	178 180 233 245	153 163 280 288	165 160 258 260		

Table 3. Soil test changes over time as affected by initial and annual applications of P2O5 and K2O on a Hartsells soil at the Plateau Experiment Station.

Figure 2. Soil test P changes over time for 1 annual and 5 residual phosphate treatments

Figure 3. Soil test K changes over time for 1 annual and 5 residual potash treatments

8

B. Effect of initial and annual rates of P₂O₅ and K₂O on corn yields and soil test values on a Dickson soil at the Highland Rim Experiment Station.

1. Corn Yields

Corn yields from initial and annual applications of P_2O_5 and/or K_2O are summarized in **Table 4**. The initial P_2O_5 application rates ranged from 0 to 240 pounds per acre. The yield for these treatments over the 7-year period, with annual applications of 120 pounds N per acre and 60 pounds K_2O per acre but with no additional P_2O_5 , averaged 76 bushels per acre. The highest yields were obtained in 1976 and the lowest in 1980. No significant yield differences among the initial P_2O_5 treatments were observed during any year or for the 7-year average.

The initial K_2O application rates ranged from 0 to 240 pounds per acre. The yield for these treatments over the 7-year period, with annual applications of 120 pounds N and 60 pounds P_2O_5 per acre but with no additional K_2O , averaged 76 bushels per acre. A significant yield response to an initial application of 240 pounds K_2O per acre was observed in 1979. For the 7-year average, no significant yield differences were observed among any of the initial K_2O treatments.

The yield for the annual 60-pound P_2O_5 per acre treatment was significantly higher than the no phosphate treatment in 1976, but not for the 7-year average. Annual applications of 60 pounds K_2O per acre resulted in a significant yield increase over no potash in 1979, but not for the 7-year average. Annual applications of 60 pounds of P_2O_5 and K_2O per acre resulted in significant yield increases over no P_2O_5 and no K_2O for 3 of the 7 years (1975, 1978, 1979), and for the 7-year average.

Corn isoyields relating corn yield to soil test levels of P and K are shown in **Figure 4**. These corn yields range from 50 bushels per acre at medium soil test P and low soil test K levels to 91 bushels per ace at medium soil test P and high soil test K levels.

2. Soil Test Values

Soil test values reported in **Table 5** are means for individual treatments by year. The soil pH ranged from near 5.0 to slightly above 6.0 for most of the treatments over the 7-year period. Two tons of lime per acre were applied after the 1977 crop; this raised the pH about 0.8 units.

The soil test P values were low prior to any fertilizer applications and remained in the low range throughout the 7 years. Even the initial 240 pounds P_2O_5 per acre treatment did not raise the soil test P above the low soil test level. Treatments receiving no P_2O_5 dropped to very low soil test P values, while those receiving 60 pounds P_2O_5 per acre each year generally remained near the same low

Fertilizatio	n (lb/A)								
Initial	Annual	1974	1975	1976	1977	1978	1979	1980	7-yr. av.
N-P ₂ O ₅ -K ₂ O	N-P ₂ O ₅ -K ₂ O				Bushel	s per a	cre		
			Effect	of Init	ial P ₂ C	0 ₅ Appl	ication	S	
120-0-60 120-30-60 120-60-60 120-120-60 120-240-60	120-0-60 120-0-60 120-0-60 120-0-60 120-0-60	107 105 109 103 103	43 40 44 38 44	110 113 119 116 109	69 68 64 72 73	55 53 48 53 57	113 110 115 118 123	34 33 38 36 39	76 75 77 76 78
	LSD(.05)	N.S.	N.S.	N.S.	N.S.	N.S.	N.S.	N.S.	N.S.
			Eſ	fect of]	[nitial]	K ₂ O Aj	pplicati	ions	
120-60-0 120-60-30 120-60-60 120-60-120 120-60-240	120-60-0 120-60-0 120-60-0 120-60-0 120-60-0	114 109 119 114 112	44 44 47 47 46	119 109 119 120 119	75 79 80 79 78	53 58 58 61 62	74 84 71 84 91	33 40 36 34 37	73 74 76 77 78
	LSD(.05)	N.S.	N.S.	N.S.	N.S.	N.S.	N.S.	N.S.	N.S.
			Eff	ect of A	nnual	P ₂ O ₅ A	pplica	tions	
120-0-0 120-60-0	120-0-0 120-60-0	107 114	49 44	107 119	64 75	48 53	84 74	37 33	71 73
	LSD(.05)	N.S.	N.S.	N.S.	N.S.	N.S.	N.S.	N.S.	N.S.
			Eff	ect of A	nnual	K ₂ O A	pplicat	ions	
120-0-0 120-0-60	120-0-0 120-0-60	107 107	49 43	107 110	64 69	48 55	84 113	37 34	71 76
	LSD(.05)	N.S.	N.S.	6	N.S.	N.S.	26	N.S.	N.S.
			Effec	t of P2	O ₅ and	K ₂ O A	Applica	tions	
120-0-0 120-60-60	120-0-0 120-60-60	107 103	49 41	107 120	64 78	48 65	84 125	37 32	71 80
	LSD(.05)	N.S.	8	N.S.	N.S.	13	37	N.S.	N.S.

$\begin{array}{ll} \mbox{Table 4.} & \mbox{Corn yields on a Dickson soil at the Highland Rim Experiment Station} \\ & \mbox{as affected by initial and annual applications of P_2O_5 and K_2O.} \end{array}$

Figure 4. Average corn yields obtained for different soil test levels of P and K on a Dickson soil

11

Fertilization (lb/A)									
Initial	Annual	Spr. 1974	Spr. 1975	Spr. 1976	Spr. 1977	Fall 1977	Spr. 1978	Spr. 1979	Spr. 1980	Fall 1980
				A.	Soil T	est Ph	osphor	us		
N-P2O5-K2O	N-P205-K20)			Pounds	s of P P	er Acre			
				Effect	of Initi	al P ₂ O	5 Appli	cations	6	
120-0-60 120-30-60 120-60-60 120-120-60 120-240-60	$\begin{array}{c} 120 - 0.60 \\ 120 - 0.60 \\ 120 - 0.60 \\ 120 - 0.60 \\ 120 - 0.60 \end{array}$	14 11 12 13 12	9 8 9 9 11	7 7 8 9 11	$10 \\ 7 \\ 8 \\ 10 \\ 10 \\ 10$	8 5 8 9	6 5 6 7 8	8 7 9 9	7 7 6 8	5 5 6 6
				Effec	t of Ini	tial K ₂	O Appl	ication	s	
120-60-0 120-60-30 120-60-60 120-60-120 120-60-240	120-60-0 120-60-0 120-60-0 120-60-0 120-60-0	11 13 12 13 12	10 9 8 9 10	$10 \\ 10 \\ 9 \\ 9 \\ 10$	13 11 11 11 12	13 13 14 18 13	9 9 11 9 11	15 17 14 14 15	13 13 15 13 14	16 16 13 14 15
			Effe	ct of Ar	nnual P	205 ar	nd K ₂ O	Applic	ations	
120-0-0 120-60-0 120-0-60 120-60-60	$\begin{array}{c} 120 - 0 - 0 \\ 120 - 60 - 0 \\ 120 - 0 - 60 \\ 120 - 60 - 60 \end{array}$	14 11 14 13	9 10 9 10	7 10 7 10	7 13 10 12	6 13 8 16	6 9 6 10	8 15 8 15	7 13 7 12	8 16 5 14
				B.	Soil To	est Pota	issium			
N-P ₂ O ₅ -K ₂ O	N-P205-K2	0		F	ounds	of K P	er Acre			
				Effect	of Initia	1 P ₂ O ₅	, Applie	ations		
$\begin{array}{c} 120 - 0 - 60 \\ 120 - 30 - 60 \\ 120 - 60 - 60 \\ 120 - 120 - 60 \\ 120 - 240 - 60 \end{array}$	$\begin{array}{c} 120 - 0.60 \\ 120 - 0.60 \\ 120 - 0.60 \\ 120 - 0.60 \\ 120 - 0.60 \end{array}$	188 158 155 180 180	133 113 130 133 125	150 148 153 153 138	140 113 118 135 130	185 155 190 175 165	155 145 150 140 153	165 145 148 153 163	143 143 145 148 148	160 170 165 170 168
				Effect	of Initi	al K ₂ O	Applic	ations		
120-60-0 120-60-30 120-60-60 120-60-120 120-60-240	$\begin{array}{c} 120\text{-}60\text{-}0\\ 120\text{-}60\text{-}0\\ 120\text{-}60\text{-}0\\ 120\text{-}60\text{-}0\\ 120\text{-}60\text{-}0\end{array}$	163 160 158 145 143	108 103 93 113 128	98 103 105 120 130	88 95 95 98 108	105 115 108 123 115	93 98 95 100 113	93 103 93 88 108		88 95 85 90 98
			Effec	t of Ani	nual P ₂	O ₅ and	d K ₂ O	Applica	ations	
120-0-0 120-60-0 120-0-60 120-60-60	$\begin{array}{c} 120 - 0 - 0 \\ 120 - 60 - 0 \\ 120 - 0 - 60 \\ 120 - 60 - 60 \end{array}$	170 163 188 145	115 108 133 118	103 98 150 148	85 88 140 123	105 105 185 173	98 93 155 145	95 93 165 143	90 80 143 123	90 88 160 153

Table 5.Soil test changes over time as affected by initial and annual applica-
tions of P2O5 and K2O on a Dickson soil at the Highland Rim Exp.Sta.

soil test P level.

The soil test K levels were initially in the medium level and initial K_2O applications did not seem to change these levels. All treatments, except the initial 240 pounds K_2O per acre treatment, that received no annual K_2O dropped to a low soil test K level (below 120 pounds K per acre) after the first corn crop and then continued to decline slowly. The initial 240 pounds per acre treatment dropped to a low soil test K level after 3 years. Annual applications of 60 pounds of K_2O per acre did not maintain the soil test K levels during the 7 years of this experiment--there was a general decline in these soil test K values.

C. Effect of initial and annual K_2O applications on corn yields and soil test values on the high phosphate Maury soil at the Middle Tennessee Experiment Station.

1. Corn Yields

Corn yields as affected by the initial and annual K_2O application rates are shown in **Table 6**. The initial K_2O applications ranged from 0 to 240 pounds K_2O per acre. The yield for these treatments over the 7-year period, with annual applications of 120 pounds N per acre but with no additional K_2O , averaged 104 bushels per acre. No significant yield differences among treatments were observed during any of the 7 years, or for the 7-year average. The treatment receiving 60 pounds K_2O per acre each year produced significantly higher yields in 1979 and for the 7year average. The Maury soil is naturally high in P, so no phosphate fertilizers were necessary.

2. Soil Test Values

Soil test values reported in **Table 7** are means for individual treatments by year. The soil pH was at 6.5 or slightly below during most of the years of the experiment, but dropped to 5.9 and 6.0 at the end of the experiment.

As expected, the soil test P values were high initially and remained high during the 7-year period, although the soil test values decreased at a rate of 4 pounds P per acre per year. The soil test K values were high initially, except for the treatment receiving no K_2O . This treatment remained in the medium soil test K range during all but 2 of the 7 years and had the lowest soil test K value (145 pounds K per acre) at the end of the 7 years. Generally, the soil test K values for all of the initial K_2O treatments declined at a rate of 6 to 9 pounds K per acre per year over the 7 years and all tested medium at the end of the experiment. The treatment receiving 60 pounds K_2O per acre annually remained in or near the high soil test range, each increase in soil test K of 40 pounds per acre increased corn yield 1 bushel per acre.

Fertilization	(lb/A)								
Initial	Annual	1974	1975	1976	1977	1978	1979	1980	7-yr. av.
N-P ₂ O ₅ -K ₂ O	N-P2O5-K2O)			Bushe	ls per a	cre		
			Effe	ct of In	itial K	₂ O App	licatio	ns	
120-0-0 120-0-30 120-0-60 120-0-120 120-0-240	120-0-0 120-0-0 120-0-0 120-0-0 120-0-0 LSD(.05)	120 119 126 129 119 N.S.	133 137 136 144 134 N.S.	123 132 135 148 134 N.S.	94 83 97 101 98 N.S.	76 71 80 84 80 N.S.	108 108 117 119 122 N.S.	46 42 48 52 41 N.S.	100 99 106 111 104 N.S.
			Effe	ct of A	nnual I	К ₂ О Ар	plicati	ons	
120-0-0 120-0-60	120-0-0 120-0-60 LSD(.05)	120 118 N.S.	133 133 N.S.	123 139 N.S.	94 106 N.S.	76 82 N.S.	108 120 11	46 49 N.S.	100 107 5

Table 6. Corn yields on a Maury soil at the Middle Tennessee Experiment Station as affected by initial and annual applications of K_2O .

Fertilization ((lb/A)								
Initial	Annual	Spr. 1974	Spr. 1975	Spr. 1976	Spr. 1977	Spr. 1978	Spr. 1979	Spr. 1980	Fall 1980
N-P2O5-K2O	N-P2O5-K20)							
232	232				A. Soi	l pH			
		Effe	ct of In	itial ar	nd Ann	ual K ₂ 0	O Appli	ications	6
120.0.60	120.0.60	62	64			45	62	62	5.0
120-0-00	120-0-60	6.2	6.4 6.4	0.0 6.6	6.6	0.5 6.6	63	6.2	5.9
120-0-30	120-0-0	6.4	6.4	6.6	6.6	6.6	63	6.2	6.0
120-0-60	120-0-0	6.3	6.4	6.6	6.6	6.6	6.3	6.1	6.0
120-0-120	120-0-0	6.3	6.4	6.5	6.5	6.5	6.2	6.1	5.9
120-0-240	120-0-0	6.3	6.4	6.6	6.5	6.6	6.3	5.9	6.0
				B. So	il Test	Phospl	iorus		
		Effec	t of Ini	lial and	Annu	al K ₂ O	Applic	ations	
				Pou	nds of I	P Per A	cre		
120-0-60	120-0-60	54	61	58	53	56	45	38	41
120-0-0	120-0-0	48	59	50	56	55	44	44	39
120-0-30	120-0-0	55	66	65	49	60	50	44	41
120-0-60	120-0-0	50	58	54	45	53	46	39	35
120-0-120	120-0-0	48	60	51	56	55	44	43	40
120-0-240	120-0-0	50	58	54	53	55	46	43	39
				C. So	oil Test	Potass	ium		
		Effec	t of Ini	tial and	l Annu	al K ₂ O	Applic	ations	

Table 7. Soil test changes over time as affected by initial and annual applications of K_2O on a Maury Soil at the Middle Tennessee Experiment Station.

-----Pounds of K Per Acre-----

120-0-60	120-0-60	215	195	230	268	233	228	215	215
120-0-0	120-0-0	180	205	180	200	188	183	163	145
120-0-30	120-0-0	205	210	220	230	183	203	183	155
120-0-60	120-0-0	233	210	215	220	200	198	200	148
120-0-120	120-0-0	260	233	250	230	210	220	185	178
120-0-240	120-0-0	295	263	280	245	228	243	340	188

D. Effect of initial and annual applications of P_2O_5 and K_2O on soybean yields and soil test values on a Grenada soil at the Milan Experiment Station.

1. Soybean Yields

Soybean yields from initial and annual applications of P_2O_5 and K_2O are summarized in **Table 8**. The initial P_2O_5 rates ranged from 0 to 160 pounds per acre. The yield for these treatments over the 7-year period, with annual applications of 20 pounds K_2O per acre, averaged 39 bushels per acre. Yields ranged from a high of 53 bushels per acre in 1975 to a low of 15 bushels per acre in 1980 (a drought year). No significant differences among any of the initial P_2O_5 treatments were observed during any of the 7 years or for the 7-year average.

The initial K_2O rates ranged from 0 to 160 pounds per acre. These treatments yielded an average of 36 bushels per acre over the 7-year period with yields ranging from a high of 49 bushels per acre in 1975 to a low of 17 bushels per acre in 1980. No significant yield differences among any of the treatments were observed during any year of the experiment or for the 7-year average.

A treatment receiving no P_2O_5 or K_2O during the entire 7 years averaged 34 bushels per acre. The treatment receiving annual applications of 20 pounds P_2O_5 per acre produced significantly higher yields only in 1980 and not for the 7-year average. The treatment receiving 20 pounds of K_2O per acre annually produced significantly higher yields in 4 of the 7 years (1976, 1977, 1978, 1979) and for the 7-year average. The treatment receiving 20 pounds per acre of P_2O_5 and K_2O annually produced significantly higher yields in 1976 and 1977, but not for the 7-year average.

Figure 5 shows the average isoyields expected from different soil test values of P and K during the course of the experiment. These yields ranged from 33 bushels per acre at low soil test P and K levels to a high of 39 bushels per acre at medium soil test P and high soil test K levels.

2. Soil Test Values

Soil test values reported in **Table 9** are means for individual treatments by year. The soil pH was near 6.5 or above and remained near these values during the course of the experiment.

The soil test P values were barely in the medium range at the beginning of the experiment. The initial applications of 80 and 160 pounds P_2O_5 per acre increased these soil test P values slightly the first year. After two crop years, all other initial P_2O_5 application rates tested low. The initial P_2O_5 fertilizer rate of 160 pounds tested medium in the fourth year and then dropped to low for the remaining crop years. The application of 20 pounds P_2O_5 annually did not maintain soil test P values and they also declined over time and were in the low soil

Fertilization (l	b/A)								
Initial	Annual	1974	1975	1976	1977	1978	1979	1980	7-yr. av.
N-P2O5-K2O	N-P205-K20)		Bu	shels p	er acre			
			Effect	of Init	ial P ₂ C	0 ₅ Appl	ication	S	
0-0-20 0-20-20 0-40-20 0-80-20 0-160-20	0-0-20 0-0-20 0-0-20 0-0-20 0-0-20	45 45 46 47 46	53 54 52 53 53	43 40 40 42 42	45 46 46 47 47	30 32 34 33 32	39 40 41 40 41	15 15 16 16 15	38 39 39 40 39
	LSD(.05)	N.S.	N.S.	N.S.	N.S.	N.S.	N.S.	N.S.	N.S.
	Effect of Initial K ₂ O Applications								
0-20-0 0-20-20 0-20-40 0-20-80 0-20-160	0-20-0 0-20-0 0-20-0 0-20-0 0-20-0	45 43 42 46 44	49 46 48 51 49	34 35 36 36 37	41 40 41 42 44	30 28 28 29 28	41 36 38 36 39	18 17 18 16 18	37 35 36 37 37
	LSD(.05)	N.S.	N.S.	N.S.	N.S.	N.S.	N.S.	N.S.	N.S.
			Effec	t of Ani	nual P ₂	O ₅ Ap	plicatio	ns	
0-0-0 0-20-0	0-0-0 0-20-0	43 45	47 49	30 34	39 41	26 30	36 41	17 18	34 37
	LSD(.05)	N.S.	N.S.	N.S.	N.S.	N.S.	N.S.	1	N.S.
			Effec	t of An	nual K	₂ О Арј	plicatio	ns	
0-0-0 0-0-20	0-0-0 0-0-20	43 45	47 53	30 42	39 45	26 30	36 39	17 15	34 38
	LSD(.05)	N.S.	N.S.	7	3	3	2	N.S.	4
		Effe	ect of A	nnual	P ₂ O ₅ a	nd K ₂ () Appli	cations	;
0-0-0 0-20-20	0-0-0 0-20-20	43 47	47 54	30 41	39 46	26 31	36 40	17 16	34 39
	LSD(.05)	N.S.	N.S.	10	6	N.S.	N.S.	N.S.	N.S.

Table 8. Soybean yields on a Grenada soil at the Milan Experiment Station as affected by initial and annual applications of P_2O_5 and K_2O .

Fertilizatio	on (lb/A)												
Initial	Annual	Spr. 1974	Fall 1974	Fall 1975	Fall 1976	Fall 1977	Fall 1978	Fall 1979					
N-P2O5-K2O	N-P2O5-K2O		1	A. Soil 7 Pound	fest Ph s of P F	osphor Per Acro	us e						
			Effec	t of Init	ial P ₂ C) ₅ App	licatior	15					
0-0-20	0-0-20	18	12	12	12	11	8	8					
0-20-20	0-0-20	16	13	11	11	9	8	7					
0-40-20	0-0-20	17	15	12	13	11	8	8					
0-80-20	0-0-20	17	18	12	13	11	9	7					
0-160-20	0-0-20	16	23	15	16	12	9	9					
		Effect of Initial K ₂ O Applications											
0-20-0	0-20-0	16	13	11	12	11	9	10					
0-20-20	0-20-0	16	12	10	13	11	9	10					
0-20-40	0-20-0	17	12	11	13	11	ó	õ					
0-20-80	0-20-0	15	13	11	13	12	10	ó					
0-20-160	0-20-0	17	12	11	14	10	10	10					
0 20 100	0 20 0												
		Effect	of Anr	ual P ₂	O ₅ and	$\mathbf{K}_2\mathbf{O}$	Applica	tions					
0-0-0	0-0-0	17	12	10	12	10	8	6					
0-20-0	0-20-0	16	13	11	12	11	9	10					
0-0-20	0-0-20	18	12	12	12	11	8	8					
0-20-20	0-20-20	19	14	11	14	11	9	9					
				B. Soi	l Test I	otassi	um						
N-P2O5-K2O	N-P205-K2	0		Pour	nds of H	K Per A	cre						
	202	Effect of Initial P2Or Applications											
0.0.20	0.0.20	200	1(2	120	1(2	150	120	1.40					
0-0-20	0-0-20	200	103	130	140	138	130	148					
0-20-20	0-0-20	180	148	115	148	148	128	135					
0-40-20	0-0-20	223	1/0	133	153	148	123	148					
0-80-20	0-0-20	225	168	135	158	155	135	130					
0-100-20	0-0-20	200	105	125	150	140	110	155					
			Effect	of Initia	al K ₂ O	Applic	ations						
0-20-0	0-20-0	195	160	113	138	125	100	123					
0-20-20	0-20-0	210	188	128	150	138	119	138					
0-20-40	0-20-0	215	255	170	198	175	118	135					
0-20-80	0-20-0	200	200	130	153	140	108	125					
0-20-160	0-20-0	220	240	150	180	155	128	138					
		Effec	t of An	nual Pa	Oc and	1 KaO	Applics	ations					
0.0.0	0.0.0	212	1/0	105	152	140	100	120					
0-0-0	0-0-0	213	168	125	153	140	123	138					
0-20-0	0-20-0	195	160	113	138	125	100	123					
0-0-20	0-0-20	200	163	130	163	158	130	148					
0-20-20	0-20-20	198	168	125	145	150	113	128					

Table 9. Soil test changes over time as affected by initial and annual applications of P_2O_5 and K_2O on a Grenada soil at the Milan Experiment Station.

test P range every year except the first year.

The soil test K values for all initial fertilizer rates were high or very close to high, but declined to the medium level over time. The rate of decline was slower in treatments receiving 20 pounds K_2O per acre each year. The initial K_2O applications raised some of the soil test K values slightly, but after two years the soil test values had dropped to medium. The treatment receiving no K_2O during the 7 years tested in the lower quarter of the medium soil test K range at the end of the experiment.

E. Effect of initial and annual rates of P₂O₅ and K₂O on cotton yields and soil test values on a Loring soil at Ames Plantation.

At this Loring soil fertility evaluation site, the initial soil test P values were low and the soil test K values clustered around the break that divides the medium and low test ranges. The initial P_2O_5 and K_2O rates raised the soil test values only slightly, and after 2 crop fertilization years, the values were back in the low range. For this reason, the initial range of rates (0 to 240 pounds per acre) of P_2O_5 and K_2O were applied 3 times and the applications occurred before the 1974, 1976, and 1978 crop years. Thus, during the 7 years of the experiment, the range of total P_2O_5 and K_2O applied was from 0 to 720 pounds per acre.

1. Cotton Yields

Cotton yields from the initial and annual applications of P_2O_5 and K_2O_5 are summarized in **Table 10**. The seed cotton yields for the treatments receiving 3 applications of the initial P_2O_5 rates over the 7 years averaged 1,737 pounds per acre and ranged from a low of 1,106 pounds per acre in 1979 to a high of 2,177 pounds per acre in 1974. Significant yield responses to these P_2O_5 applications were found in 4 of the 7 years and for the 7-year average.

The seed cotton yields for the treatments receiving 3 applications of the initial K_2O rates over the 7 years averaged 1,556 pounds per acre and ranged from a low of 634 pounds per acre in 1979 to a high of 2,113 pounds per acre in 1974. A significant response to these applications of K_2O was found only in the low yield year of 1979 but not for the 7-year average.

Yields from the treatment receiving no P_2O_5 or K_2O but 60 pounds N per acre averaged only 849 pounds seed cotton per acre. Adding 60 pounds P_2O_5 each year increased this 7-year average to 1,232 pounds per acre and resulted in a significant yield increase in 4 of the 7 years (1974, 1975, 1976, 1978). The treatment receiving 60 pounds of N and K_2O each year averaged 1,522 pounds seed cotton per acre and resulted in significant yield increases in each of the 7 years and for the 7-year average. The highest yielding treatment of the experiment received 60 pounds of N, P_2O_5 , and K_2O each year and averaged 1,975 pounds seed cotton per acre and K_2O each year and averaged 1,975 pounds seed cotton per acre and N_2O_5 , and K_2O each year and averaged 1,975 pounds seed cotton per acre and N_2O_5 .

Fertilization (lb/A)										
Initial	Annual	1974	1975	1976	1977	1978	1979	1980	7-yr. av.	
N-P ₂ O ₅ -K ₂ O	N-P ₂ O ₅ -K ₂ OPounds Seed Cotton Per Acre									
	Effect of Initial P2O5 Applications									
60-0-60	60-0-60	1823	967	1624	1783	1984	971	1499	1521	
60-30-60	60-0-60	1932	1043	1684	1823	1913	1006	1383	1540	
60-60-60	60-0-60	2382	1263	1899	2210	2164	1001	1546	1767	
60-120-60	60-0-60	2338	1574	2028	2128	2439	1161	1542	1887	
60-240-60	60-0-60	2412	1598	2044	2273	2368	1390	1582	1952	
	LSD(.05)	461	342	N.S.	355	N.S.	237	N.S.	258	
	Effect of Initial K ₂ O Applications									
60-60-0	60-60-0	1815	1048	1145	1556	1649	393	1021	1232	
60-60-30	60-60-0	2376	1454	1570	1695	1774	474	1028	1482	
60-60-60	60-60-0	2254	1399	1763	1981	1919	760	1343	1631	
60-60-120	60-60-0	2118	1321	1957	2044	1987	785	1170	1626	
60-60-240	60-60-0	2003	1511	1989	2292	2513	758	1592	1808	
	LSD(.05)	N.S.	N.S.	N.S.	N.S.	N.S.	217	N.S.	N.S.	
			Eff	ect of A	nnual	P ₂ O ₅ A	pplica	tions		
60-0-0	60-0-0	1118	577	616	1259	1165	281	927	849	
60-60-0	60-60-0	1815	1048	1145	1556	1649	393	1021	1232	
	LSD(.05)	489	451	518	N.S.	444	N.S.	N.S.	N.S.	
		Effect of Annual K ₂ O Applications								
60-0-0	60-0-0	1118	577	616	1259	1165	281	927	849	
60-0-60	60-0-60	1823	967	1624	1783	1984	971	1499	1522	
	LSD(.05)	494	162	481	468	444	332	493	150	
			Effect	of Annu	ual P ₂ C	05 and	к ₂ о а	pplicat	ions	
60-0-0	60-0-0	1118	577	616	1259	1165	281	927	849	
60-60-60	60-60-60	2224	1702	1900	2390	2452	1538	1617	1975	
	LSD(.05)	936	426	308	770	432	133	255	381	

$\label{eq:constraint} Table 10. \quad Cotton yields on a Loring soil at Ames Plantation as affected by initial and annual applications of P_2O_5 and K_2O.$

acre per year, with the highest yield of 2,452 pounds per acre obtained in 1978 and the lowest yield of 1,538 pounds per acre in 1979. This treatment also resulted in significant yield increases in each of the 7 years and for the 7-year average.

Seed cotton isoyields as a function of soil test levels of P and K over the course of the experiment are shown in Figure 6. At low soil test P and K levels, seed cotton yields were around 1,000 pounds per acre, but as soil test K levels increased to a high level, cotton yields more than doubled.

2. Soil Test Values

Soil test values reported in Table 11 are means for individual treatments by year. The soil pH was generally between 5.5 and 6.0 during most of the years, but increased to 6.4 and above after liming in the fall of 1979.

The soil test P values were low during much of the experiment. The high P_2O_5 rate (240 pounds per acre) would raise the soil test level to medium for 1 or 2 crop years after each application but it would drop back to low over the next few years. Applying 60 pounds P_2O_5 per acre each year resulted in a slight increase in soil test P values over time, but the soil test values still remained in the low P test range throughout the 7 years.

The soil test K values were medium to low initially and the 3 applications of the initial K_2O rates raised these soil test values after each application, but they declined over the following 2 crop years. Each time K_2O was applied at the 240 pounds per acre rate, it raised the soil test K to a high level, but the level declined to medium soon thereafter. Applying 60 pounds K_2O per acre each year gradually increased the soil test K values and resulted in high K soil test values at the end of the 7 years of the experiment. **Figures 7 and 8** are block charts of mean soil test P and K for the different fertility treatments over the years. **Figure 7** shows how the soil test P would rise the year after each application, only to decline the following year. **Figure 8** shows a similar trend in soil test K values relative to times of application, but not to the extremes as exhibited by the soil test P values. These results indicate that for cotton, smaller annual fertilizer additions were more effective than less frequent larger fertilizer applications.

Summary

The average corn yields from the five initial P_2O_5 application rates were greater on the Hartsells soil (119 bu/A) than on the Dickson soil (76 bu/A). This was probably due to higher soil test P values and better rainfall distribution at the Hartsells location than at the Dickson location, where soil test P values were low. No significant response to initial P_2O_5 application rates was observed for any one of the 7 years or for the 7-year average. Annual applications of 60 pounds P_2O_5 per acre had no significant effect on corn yields during any year or for the 7-year average on the Hartsells soil, but did significantly increase corn yields on the Dickson soil in 1976.

Figure 6. Average seed cotton yields obtained at different soil test levels of P and K on a Loring soil

23

Fertilization (lb/A)													
Initial	Annual	Spr. 1974	Fall 1974	Spr. 1975	Spr. 1976	Fall 1976	Fall 1977	Fall 1978	Fall 1979	Spr. 1980	Fall 1980		
						Soil	Fast Ph	osnhor	116				
N-P205-K2				Pour	ids P P	er Acre							
Effect of Initial Applications of P_2O_5 Applied in Spring of 1974, 1976, and 1974													
60-0-60	60-0-60	4	5	3	4	4	4	6	5	7	7		
60-30-60	60-0-60	4	6	4	4	6	5	8	8	6	7		
60-60-60	60-0-60	4	9	7	5	8	5	8	8	6	9		
60-120-60	60-0-60	4	.8	11	6	15	6	8	10	7	8		
00-240-00	00-0-00	4	17	19	9	23	10	11	15	10	11		
Effect of Initial Applications of $ m K_2O$ Applied in Spring of 1974, 1976, and 1978													
60-60-0	60-60-0	3	8	6	5	8	7	9	13	10	13		
60-60-30	60-60-0	2	8	5	6	9	7	8	13	10	13		
60-60-60	60-60-0	2	7	5	6	8	6	7	11	9	13		
60-60-120	60-60-0	4	7	5	6	8	7	8	15	10	14		
60-60-240	60-60-0	2	7	5	7	9	6	9	14	11	13		
	Effect of Annual P2O5 and K2O Applications												
60-0-0	60-0-0	3	5	2	4	4	3	5	6	6	6		
60-60-0	60-60-0	3	8	6	5	8	7	9	13	10	13		
60-0-60	60-0-60	4	5	3	4	4	4	6	5	7	7		
60-60-60	60-60-60	3	8	5	6	9	8	9	14	10	12		
					B. So	il Test	Potass	ium					
$N-P_2O_5-K_2$	Po	unds k	K Per A	cre									
Effect of Initial Applications of P2O5 Applied in Spring of 1974, 1976, and 1978													
60-0-60	60-0-60	133	195	170	175	208	178	243	200	178	233		
60-30-60	60-0-60	133	203	148	190	238	180	220	210	178	235		
60-60-60	60-0-60	130	190	163	173	223	170	218	203	180	233		
60-120-60	60-0-60	135	185	153	175	238	178	203	205	200	218		
60-240-60	60-0-60	128	188	143	160	248	178	228	203	193	208		
Effect of Initial Applications of K ₂ O Applied in Spring of 1974, 1976, and 1977													
60 60 0	60 60 0	00	122	05	109	120	00	125	110	05	102		
60-60-30	60-60-0	118	155	130	123	155	90	148	118	88	128		
60-60-60	60-60-0	103	160	120	135	158	88	148	130	93	125		
60-60-120	60-60-0	115	195	155	138	218	123	170	143	105	130		
60-60-240	60-60-0	100	248	203	170	308	173	228	178	153	173		
	Effect of Annual P ₂ O ₅ and K ₂ O Applications												
(0,0,0													
60-0-0	60-0-0	93	115	83	113	113	85	130	98	80	105		
60-0-60	60-00-0	122	133	170	175	208	179	242	200	179	233		
60-60-60	60-60-60	130	180	140	170	218	185	208	195	168	220		

Table 11. Soil test changes over time as affected by initial and annual applications of P_2O_5 and K_2O on a Loring soil at Ames Plantation.

Figure 7. The residual soil test values for 5 rates of P₂O₅ applied before each of the 1974, 1976, and 1978 crop years

Figure 8. The residual soil test values for 5 rates of K₂O applied before each of the 1974, 1976, and 1978 crop years

26

Initial rates of K_2O produced higher corn yields on the Hartsells soil (91 bu/A) than on the Dickson soil (76 bu/A) but less than the yields produced on the Maury soil (104 bu/A). No significant yield response to initial K_2O applications was observed for any of the 7 years or for the 7-year average on the Hartsells or Dickson soils. The 7-year average corn yield on the Maury soil showed a significant response to 120 pounds K_2O per acre. Annual applications of 60 pounds K_2O per acre significantly increased yield on the Hartsells soil in 1975 and for the 7-year average, but significantly increased yield on the Dickson soil in only 1979. This same annual 60 pounds K_2O rate per acre significantly increased corn yields on the Maury soil in 1979 and for the 7-year average.

Soybean yields on the Grenada soil averaged 39 bu/A from initial P_2O_5 applications and 36 bu/A from initial K_2O application rates. However, there was no significant response to either P_2O_5 or K_2O during any one of the 7 years or for the 7-year average. Annual applications of 20 pounds P_2O_5 per acre resulted in significant yield increases only in 1980 and for the 7-year average. Annual applications of 20 pounds K_2O per acre resulted in significant yield increases in 4 years (1976, 1977, 1978, 1979) and for the 7-year average. No fertilizer treatment was sufficient to keep the soil test P and K from decreasing each year of the experiment.

Seed cotton yields on the Loring soil averaged 1,737 lbs/A from initial P_2O_5 application rates and 1,556 lb/A from initial K_2O application rates. The three initial P_2O_5 rates applied resulted in significant seed cotton yield increases in 4 years (1974, 1975, 1977, 1979) and for the 7-year average. The three initial K_2O rates applied resulted in significant yield increases in 1979 and for the 7-year average. Annual applications of 60 pounds P_2O_5 per acre resulted in significant cotton yield increases in 4 years (1974, 1975, 1974, 1975, 1976, 1979) and for the 7-year average. Annual applications of 60 pounds P_2O_5 per acre resulted in significant yield increases in 4 years (1974, 1975, 1976, 1979) and for the 7-year average. Annual applications of 60 pounds K_2O per acre resulted in significant yield increases every year and for the 7-year average.

The soil test values indicate that the soil test procedure used did not accurately measure the phosphorus levels in the soils containing loess, as the soil test values in these soils were much lower than expected for the fertilizer application rates used. The soil phosphorus in these loess soils was perhaps chemically fixed in such a way that the $0.05N H_2SO_4$ plus 1% $(NH_4)_2SO_4$ extracting solution did not extract the phosphorus, or the soils contained enough bases to neutralize the extracting solution.

The crop yields and soil test values will provide producers with the average yield a crop will produce at given soil test values and the rate of soil test changes over time with and without additional fertilizer additions for the soils evaluated and other similar soils.

THE UNIVERSITY OF TENNESSEE AGRICULTURAL EXPERIMENT STATION KNOXVILLE, TENNESSEE 37996-4500

E11-0415-00-007-92

Agricultural Committee, Board of Trustees Joseph E. Johnson, President of the University; Amon Carter Evans, Chairman; L. H. Ivy, Commissioner of Agriculture, Vice Chairman; Houston Gordon, R. B. Hailey, William Johnson, Jack Dalton; D. M. Gossett, Vice President for Agriculture

STATION OFFICERS

Administration Joseph E. Johnson, President D. M. Gossett, Vice President for Agriculture D. O. Richardson, Dean T. H. Klindt, Associate Dean J. I. Sewell, Associate Dean William L. Sanders, Statistician

Department Heads

H. Williamson, Jr., Agricultural Economics and Rural Sociology Fred D. Tompkins, Agricultural Engineering K. R. Robbins, Animal Science Bonnie P. Riechert, Communications
Carroll J. Southards, Entomology and Plant Pathology Hugh O. Jaynes, Food Technology and Science
George T. Weaver, Forestry, Wildlife, and Fisheries James D. Moran III (Associate Dean), Human Ecology
G. Crater, Ornamental Horticulture and Landscape Design John E. Foss, Plant and Soil Science

BRANCH STATIONS

Ames Plantation, Grand Junction, James M. Anderson, Superintendent Dairy Experiment Station, Lewisburg, H. H. Dowlen, Superintendent Forestry Experiment Station: Locations at Oak Ridge, Tullahoma, and Wartburg, Richard M. Evans, Superintendent
Highland Rim Experiment Station, Springfield, D. O. Onks, Superintendent Knoxville Experiment Station, Knoxville, John Hodges III, Superintendent Martin Experiment Station, Martin, H. A. Henderson, Superintendent Midale Tennessee Experiment Station, Spring Hill, J. W. High Jr., Superintendent Milan Experiment Station, Milan, John F. Bradley, Superintendent Plateau Experiment Station, Greeneville, R. D. Freeland, Superintendent Tobacco Experiment Station, Greeneville, Philip P. Hunter, Superintendent

Printed on recycled paper