64,179 research outputs found

    Development of fuel cell electrodes Semiannual report, 30 Jun. 1966 - 30 Dec. 1966

    Get PDF
    Fuel cell using circulating liquid electrolyte and water removal by transpiration through porous electrode

    Status of Lattice QCD

    Full text link
    Significant progress has recently been achieved in the lattice gauge theory calculations required for extracting the fundamental parameters of the standard model from experiment. Recent lattice determinations of such quantities as the kaon BB parameter, the mass of the bb quark, and the strong coupling constant have produced results and uncertainties as good or better than the best conventional determinations. Many other calculations crucial to extracting the fundamental parameters of the standard model from experimental data are undergoing very active development. I review the status of such applications of lattice QCD to standard model phenomenology, and discuss the prospects for the near future.Comment: 20 pages, 8 embedded figures, uuencoded, 2 missing figures. (Talk presented at the Lepton-Photon Symposium, Cornell University, Aug. 10-15, 1993.

    An exactly solvable dissipative transport model

    Full text link
    We introduce a class of one-dimensional lattice models in which a quantity, that may be thought of as an energy, is either transported from one site to a neighbouring one, or locally dissipated. Transport is controlled by a continuous bias parameter q, which allows us to study symmetric as well as asymmetric cases. We derive sufficient conditions for the factorization of the N-body stationary distribution and give an explicit solution for the latter, before briefly discussing physically relevant situations.Comment: 7 pages, 1 figure, submitted to J. Phys.

    Massive Fields and the 2D String

    Get PDF
    The first massive level of closed bosonic string theory is studied. Free-field equations are derived by imposing Weyl invariance on the world sheet. A two-parameter solution to the equation of motion and constraints is found in two dimensions with a flat linear-dilaton background. One-to-one tachyon scattering is studied in this background. The results support Dhar, Mandal and Wadia's proposal that 2D critical string theory corresponds to the c=1 matrix model in which both sides of the Fermi sea are excited.Comment: 17 pages, Latex. V2: One ref added, minor rephrasing of the first paragraph in Sec.3.1, typos in (56) and (57) correcte

    Mapping vesicle shapes into the phase diagram: A comparison of experiment and theory

    Full text link
    Phase-contrast microscopy is used to monitor the shapes of micron-scale fluid-phase phospholipid-bilayer vesicles in aqueous solution. At fixed temperature, each vesicle undergoes thermal shape fluctuations. We are able experimentally to characterize the thermal shape ensemble by digitizing the vesicle outline in real time and storing the time-sequence of images. Analysis of this ensemble using the area-difference-elasticity (ADE) model of vesicle shapes allows us to associate (map) each time-sequence to a point in the zero-temperature (shape) phase diagram. Changing the laboratory temperature modifies the control parameters (area, volume, etc.) of each vesicle, so it sweeps out a trajectory across the theoretical phase diagram. It is a nontrivial test of the ADE model to check that these trajectories remain confined to regions of the phase diagram where the corresponding shapes are locally stable. In particular, we study the thermal trajectories of three prolate vesicles which, upon heating, experienced a mechanical instability leading to budding. We verify that the position of the observed instability and the geometry of the budded shape are in reasonable accord with the theoretical predictions. The inability of previous experiments to detect the ``hidden'' control parameters (relaxed area difference and spontaneous curvature) make this the first direct quantitative confrontation between vesicle-shape theory and experiment.Comment: submitted to PRE, LaTeX, 26 pages, 11 ps-fi

    Johnson-Kendall-Roberts theory applied to living cells

    Get PDF
    Johnson-Kendall-Roberts (JKR) theory is an accurate model for strong adhesion energies of soft slightly deformable material. Little is known about the validity of this theory on complex systems such as living cells. We have addressed this problem using a depletion controlled cell adhesion and measured the force necessary to separate the cells with a micropipette technique. We show that the cytoskeleton can provide the cells with a 3D structure that is sufficiently elastic and has a sufficiently low deformability for JKR theory to be valid. When the cytoskeleton is disrupted, JKR theory is no longer applicable

    Criticality and Condensation in a Non-Conserving Zero Range Process

    Get PDF
    The Zero-Range Process, in which particles hop between sites on a lattice under conserving dynamics, is a prototypical model for studying real-space condensation. Within this model the system is critical only at the transition point. Here we consider a non-conserving Zero-Range Process which is shown to exhibit generic critical phases which exist in a range of creation and annihilation parameters. The model also exhibits phases characterised by mesocondensates each of which contains a subextensive number of particles. A detailed phase diagram, delineating the various phases, is derived.Comment: 15 pages, 4 figure, published versi

    Spontaneous Symmetry Breaking in a Non-Conserving Two-Species Driven Model

    Full text link
    A two species particle model on an open chain with dynamics which is non-conserving in the bulk is introduced. The dynamical rules which define the model obey a symmetry between the two species. The model exhibits a rich behavior which includes spontaneous symmetry breaking and localized shocks. The phase diagram in several regions of parameter space is calculated within mean-field approximation, and compared with Monte-Carlo simulations. In the limit where fluctuations in the number of particles in the system are taken to zero, an exact solution is obtained. We present and analyze a physical picture which serves to explain the different phases of the model

    Condensation Transitions in a One-Dimensional Zero-Range Process with a Single Defect Site

    Full text link
    Condensation occurs in nonequilibrium steady states when a finite fraction of particles in the system occupies a single lattice site. We study condensation transitions in a one-dimensional zero-range process with a single defect site. The system is analysed in the grand canonical and canonical ensembles and the two are contrasted. Two distinct condensation mechanisms are found in the grand canonical ensemble. Discrepancies between the infinite and large but finite systems' particle current versus particle density diagrams are investigated and an explanation for how the finite current goes above a maximum value predicted for infinite systems is found in the canonical ensemble.Comment: 18 pages, 4 figures, revtex

    Force dependent fragility in RNA hairpins

    Get PDF
    We apply Kramers theory to investigate the dissociation of multiple bonds under mechanical force and interpret experimental results for the unfolding/refolding force distributions of an RNA hairpin pulled at different loading rates using laser tweezers. We identify two different kinetic regimes depending on the range of forces explored during the unfolding and refolding process. The present approach extends the range of validity of the two-states approximation by providing a theoretical framework to reconstruct free-energy landscapes and identify force-induced structural changes in molecular transition states using single molecule pulling experiments. The method should be applicable to RNA hairpins with multiple kinetic barriers.Comment: Latex file, 4 pages+3 figure
    corecore