6,428 research outputs found

    Trichloroethylene-induced formic aciduria: effect of dose, sex and strain of rat.

    Get PDF
    The industrial solvent trichloroethylene (TCE) has been reported to increase the excretion of formic acid in the urine of male Fischer 344 (F-344) rats following large oral doses. We have examined the dose–response relationship for formic aciduria in male and female Fischer 344 rats, the effect of some known metabolites of TCE and examined the response in male Wistar rats to help understand its relevance to renal toxicity. We report that doses of TCE as low as 8 mg/kg for 3 days to both male and female F344 rats produced formic aciduria. The formic aciduria was time-dependent being more marked after 3 doses compared to one dose in male F344 rats and to a lesser extent in female F344 rats. TCE administration to male Wistar rats produced less formic aciduria than in male F344 rats, indicating a strain difference in response. As TCE is primarily metabolised by cytochrome P450 2E1, Wistar rats were administered inducers of cytochrome P450 2E1 followed by TCE, this increased formic acid excretion to a concentration similar to that observed in male F344 rats, indicating a role for P450. Administration of the major metabolites of TCE, trichloroethanol and trichloroacetic acid to male F344 rats also produced a marked and sustained formic aciduria, while the metabolite of TCE formed via glutathione conjugation had no effect on formic acid excretion. The mechanism whereby this response occurs is currently not understood, but the formic acid excreted is not a metabolite of TCE, but appears to be due to interference with the metabolic utilisation of formate by a down stream metabolite of TCE. Over the three days of the studies no histopathological evidence of kidney toxicity was observed in F344 rats given TCE, indicating that the perturbation of formate metabolism does not lead to acute renal injury

    Trichloroethylene and trichloroethanol-induced formic aciduria and renal injury in male F-344 rats following 12 weeks exposure

    Get PDF
    Trichloroethylene (TCE) is widely used as a cleaning and decreasing agent and has been shown to cause liver tumours in rodents and a small incidence of renal tubule tumours in male rats. The basis for the renal tubule injury is believed to be related to metabolism of TCE via glutathione conjugation to yield the cysteine conjugate that can be activated by the enzyme cysteine conjugate β-lyase in the kidney. More recently TCE and its major metabolite trichloroethanol (TCE-OH) have been shown to cause formic aciduria which can cause renal injury after chronic exposure in rats. In this study we have compared the renal toxicity of TCE and TCE-OH in rats to try and ascertain whether the glutathione pathway or formic aciduria can account for the toxicity. Male rats were given TCE (500 mg/kg/day) or TCE-OH at (100 mg/kg/day) for 12 weeks and the extent of renal injury measured at several time points using biomarkers of nephrotoxicity and prior to termination assessing renal tubule cell proliferation. The extent of formic aciduria was also determined at several time points, while renal pathology and plasma urea and creatinine were determined at the end of the study. TCE produced a very mild increase in biomarkers of renal injury, total protein, and glucose over the first two weeks of exposure and increased Kim-1 and NAG in urine after 1 and 5 weeks exposure, while TCE-OH did not produce a consistent increase in these biomarkers in urine. However, both chemicals produced a marked and sustained increase in the excretion of formic acid in urine to a very similar extent. The activity of methionine synthase in the liver of TCE and TCE-OH treated rats was inhibited by about 50% indicative of a block in folate synthesis. Both renal pathology and renal tubule cell proliferation were reduced after TCE and TCE-OH treatment compared to controls. Our findings do not clearly identify the pathway which is responsible for the renal toxicity of TCE but do provide some support for metabolism via glutathione conjugation

    Mapping vulnerability to multiple hazards in the Savanna Ecosystem in Ghana

    Get PDF
    The interior savannah ecosystem in Ghana is subjected to a number of hazards, including droughts, windstorms, high temperatures and heavy rainfall, the frequency and intensity of which are projected to increase during the 21st century as a result of climate variability and change. Vulnerabilities to these hazards vary, both spatially and temporally, due to differences in susceptibilities and adaptive capacities. Many mapping exercises in Ghana have considered the impacts of single hazards on single sectors, particularly agriculture. But the hazards often occur concurrently or alternately, and have varying degrees of impacts on different sectors. The impacts also interact. These interactions make mapping of the vulnerabilities of multiple sectors to multiple hazards imperative. This paper presents an analysis of the spatial dimension of vulnerabilities by mapping vulnerability of sectors that support livelihood activities at a single point in time, using the Upper East Region of Ghana as a case study. Data colected to develop the maps were largely quantitative and from secondary sources. Other data drew on fieldwork undertaken in the region from July - September 2013. Quantitative values were assigned to qualitative categorical data as the mapping process is necessarily quantitative. Data were divided into susceptibility and adaptive capacity indicators and mapped in ArcGIS 10.2 using weighted linear sum aggregation. Agriculture was found to be the most vulnerable sector in all districts of the Upper East Region and experienced the greatest shocks from all hazards. Although all districts were vulnerable, the Talensi, Nabdam, Garu-Temapane and Kassena-Nankana West Districts were most vulnerable. Findings highlight the need for more targeted interventions to build adaptive capacity in light of the spatial distributions of vulnerabilities to hazards across sectors

    Can the skin make you fat? A role for the skin in regulating adipose tissue function and whole-body glucose and lipid homeostasis

    Get PDF
    This work was supported by the following funding: BBSRC-LIDO Studentship (PWC, MPP and EE); Diabetes UK project grant (15/0005154) (PWC); British Skin Foundation (RFH, MP); MedCity (RFH)

    Reduced keratin expression in colorectal neoplasia and associated fields is reversible by diet and resection

    Get PDF
    Abstract Background Patients with adenomatous colonic polyps are at increased risk of developing further polyps suggesting field-wide alterations in cancer predisposition. The current study aimed to identify molecular alterations in the normal mucosa in the proximity of adenomatous polyps and to assess the modulating effect of butyrate, a chemopreventive compound produced by fermentation of dietary residues. Methods A cross-sectional study was undertaken in patients with adenomatous polyps: biopsy samples were taken from the adenoma, and from macroscopically normal mucosa on the contralateral wall to the adenoma and from the mid-sigmoid colon. In normal subjects biopsies were taken from the mid-sigmoid colon. Biopsies were frozen for proteomic analysis or formalin-fixed for immunohistochemistry. Proteomic analysis was undertaken using iTRAQ workflows followed by bioinformatics analyses. A second dietary fibre intervention study arm used the same endpoints and sampling strategy at the beginning and end of a high-fibre intervention. Results Key findings were that keratins 8, 18 and 19 were reduced in expression level with progressive proximity to the lesion. Lesional tissue exhibited multiple K8 immunoreactive bands and overall reduced levels of keratin. Biopsies from normal subjects with low faecal butyrate also showed depressed keratin expression. Resection of the lesion and elevation of dietary fibre intake both appeared to restore keratin expression level. Conclusion Changes in keratin expression associate with progression towards neoplasia, but remain modifiable risk factors. Dietary strategies may improve secondary chemoprevention. Trial registration number ISRCTN90852168. Keywords: ADENOMA, BUTYRATE, CYTOKERATINS, DIETARY FIBR

    Epigenetic regulation of cyclooxygenase-2 by methylation of c8orf4 in pulmonary fibrosis

    Get PDF
    Fibroblasts derived from the lungs of patients with idiopathic pulmonary fibrosis (IPF) and systemic sclerosis (SSc) produce low levels of prostaglandin (PG) E(2), due to a limited capacity to up-regulate cyclooxygenase-2 (COX-2). This deficiency contributes functionally to the fibroproliferative state, however the mechanisms responsible are incompletely understood. In the present study, we examined whether the reduced level of COX-2 mRNA expression observed in fibrotic lung fibroblasts is regulated epigenetically. The DNA methylation inhibitor, 5-aza-2′-deoxycytidine (5AZA) restored COX-2 mRNA expression by fibrotic lung fibroblasts dose dependently. Functionally, this resulted in normalization of fibroblast phenotype in terms of PGE(2) production, collagen mRNA expression and sensitivity to apoptosis. COX-2 methylation assessed by bisulfite sequencing and methylation microarrays was not different in fibrotic fibroblasts compared with controls. However, further analysis of the methylation array data identified a transcriptional regulator, chromosome 8 open reading frame 4 (thyroid cancer protein 1, TC-1) (c8orf4), which is hypermethylated and down-regulated in fibrotic fibroblasts compared with controls. siRNA knockdown of c8orf4 in control fibroblasts down-regulated COX-2 and PGE(2) production generating a phenotype similar to that observed in fibrotic lung fibroblasts. Chromatin immunoprecipitation demonstrated that c8orf4 regulates COX-2 expression in lung fibroblasts through binding of the proximal promoter. We conclude that the decreased capacity of fibrotic lung fibroblasts to up-regulate COX-2 expression and COX-2-derived PGE(2) synthesis is due to an indirect epigenetic mechanism involving hypermethylation of the transcriptional regulator, c8orf4

    Shedding Light Onto the Nature of Iron Decorated Graphene and Graphite Oxide Nanohybrids for CO₂ Conversion at Atmospheric Pressure

    Get PDF
    We report on the design and testing of new graphite and graphene oxide‐based extended π‐conjugated synthetic scaffolds for applications in sustainable chemistry transformations. Nanoparticle‐functionalised carbonaceous catalysts for new Fischer Tropsch and Reverse GasWater Shift (RGWS) transformations were prepared: functional graphene oxides emerged from graphite powders via an adapted Hummer's method and subsequently impregnated with uniform‐sized nanoparticles. Then the resulting nanomaterials were imaged by TEM, SEM, EDX, AFM and characterised by IR, XPS and Raman spectroscopies prior to incorporation of Pd(II) promoters and further microscopic and spectroscopic analysis. Newly synthesised 2D and 3D layered nanostructures incorporating carbon‐supported iron oxide nanoparticulate pre‐catalysts were tested, upon hydrogen reduction in situ, for the conversion of CO2 to CO as well as for the selective formation of CH4 and longer chain hydrocarbons. The reduction reaction was also carried out and the catalytic species isolated and fully characterised. The catalytic activity of a graphene oxide‐supported iron oxide pre‐catalyst converted CO2 into hydrocarbons at different temperatures (305, 335, 370 and 405 °C), and its activity compared well with that of the analogues supported on graphite oxide, the 3‐dimensional material precursor to the graphene oxide. Investigation into the use of graphene oxide as a framework for catalysis showed that it has promising activity with respect to reverse gas water shift (RWGS) reaction of CO2 to CO, even at the low levels of catalyst used and under the rather mild conditions employed at atmospheric pressure. Whilst the γ‐Fe2O3 decorated graphene oxide‐based pre‐catalyst displays fairly constant activity up to 405 °C, it was found by GC‐MS analysis to be unstable with respect to decomposition at higher temperatures. The addition of palladium as a promoter increased the activity of the iron functionalised graphite oxide in the RWGS. The activity of graphene oxide supported catalysts was found to be enhanced with respect to that of iron‐functionalised graphite oxide with, or without palladium as a promoter, and comparable to that of Fe@carbon nanotube‐based systems tested under analogous conditions. These results display a significant step forward for the catalytic activity estimations for the iron functionalised and rapidly processable and scalable graphene oxide. The hereby investigated phenomena are of particular relevance for the understanding of the intimate surface morphologies and the potential role of non‐covalent interactions in the iron oxide‐graphene oxide networks, which could inform the design of nano‐materials with performance in future sustainable catalysis applications
    • …
    corecore