42 research outputs found

    The Role of Collective Neutrino Flavor Oscillations in Core-Collapse Supernova Shock Revival

    Get PDF
    We explore the effects of collective neutrino flavor oscillations due to neutrino-neutrino interactions on the neutrino heating behind a stalled core-collapse supernova shock. We carry out axisymmetric (2D) radiation-hydrodynamic core-collapse supernova simulations, tracking the first 400 ms of the post-core-bounce evolution in 11.2 solar mass and 15 solar mass progenitor stars. Using inputs from these 2D simulations, we perform neutrino flavor oscillation calculations in multi-energy single-angle and multi-angle single-energy approximations. Our results show that flavor conversions do not set in until close to or outside the stalled shock, enhancing heating by not more than a few percent in the most optimistic case. Consequently, we conclude that the postbounce pre-explosion dynamics of standard core-collapse supernovae remains unaffected by neutrino oscillations. Multi-angle effects in regions of high electron density can further inhibit collective oscillations, strengthening our conclusion.Comment: v2: Added multi-angle calculations. Conclusions unchanged. 16 pages, 7 figures. Accepted to Phys. Rev. D after revisions: 15 Sept 2011 (major), 24 Jan 2012 (minor

    Impact of an improved neutrino energy estimate on outflows in neutron star merger simulations

    Get PDF
    Binary neutron star mergers are promising sources of gravitational waves for ground-based detectors such as Advanced LIGO. Neutron-rich material ejected by these mergers may also be the main source of r-process elements in the Universe, while radioactive decays in the ejecta can power bright electromagnetic postmerger signals. Neutrino-matter interactions play a critical role in the evolution of the composition of the ejected material, which significantly impacts the outcome of nucleosynthesis and the properties of the associated electromagnetic signal. In this work, we present a simulation of a binary neutron star merger using an improved method for estimating the average neutrino energies in our energy-integrated neutrino transport scheme. These energy estimates are obtained by evolving the neutrino number density in addition to the neutrino energy and flux densities. We show that significant changes are observed in the composition of the polar ejecta when comparing our new results with earlier simulations in which the neutrino spectrum was assumed to be the same everywhere in optically thin regions. In particular, we find that material ejected in the polar regions is less neutron rich than previously estimated. Our new estimates of the composition of the polar ejecta make it more likely that the color and time scale of the electromagnetic signal depend on the orientation of the binary with respect to an observer’s line of sight. These results also indicate that important observable properties of neutron star mergers are sensitive to the neutrino energy spectrum, and may need to be studied through simulations including a more accurate, energy-dependent neutrino transport scheme

    Low mass binary neutron star mergers: Gravitational waves and neutrino emission

    Get PDF
    Neutron star mergers are among the most promising sources of gravitational waves for advanced ground-based detectors. These mergers are also expected to power bright electromagnetic signals, in the form of short gamma-ray bursts, infrared/optical transients powered by r-process nucleosynthesis in neutron-rich material ejected by the merger, and radio emission from the interaction of that ejecta with the interstellar medium. Simulations of these mergers with fully general relativistic codes are critical to understand the merger and postmerger gravitational wave signals and their neutrinos and electromagnetic counterparts. In this paper, we employ the Spectral Einstein Code to simulate the merger of low mass neutron star binaries (two 1.2M⊙ neutron stars) for a set of three nuclear-theory-based, finite temperature equations of state. We show that the frequency peaks of the postmerger gravitational wave signal are in good agreement with predictions obtained from recent simulations using a simpler treatment of gravity. We find, however, that only the fundamental mode of the remnant is excited for long periods of time: emission at the secondary peaks is damped on a millisecond time scale in the simulated binaries. For such low mass systems, the remnant is a massive neutron star which, depending on the equation of state, is either permanently stable or long lived (i.e. rapid uniform rotation is sufficient to prevent its collapse). We observe strong excitations of l=2, m=2 modes, both in the massive neutron star and in the form of hot, shocked tidal arms in the surrounding accretion torus. We estimate the neutrino emission of the remnant using a neutrino leakage scheme and, in one case, compare these results with a gray two-moment neutrino transport scheme. We confirm the complex geometry of the neutrino emission, also observed in previous simulations with neutrino leakage, and show explicitly the presence of important differences in the neutrino luminosity, disk composition, and outflow properties between the neutrino leakage and transport schemes

    Black hole-neutron star mergers using a survey of finite-temperature equations of state

    Get PDF
    Each of the potential signals from a black hole–neutron star merger should contain an imprint of the neutron star equation of state: gravitational waves via its effect on tidal disruption, the kilonova via its effect on the ejecta, and the gamma-ray burst via its effect on the remnant disk. These effects have been studied by numerical simulations and quantified by semianalytic formulas. However, most of the simulations on which these formulas are based use equations of state without finite temperature and composition-dependent nuclear physics. In this paper, we simulate black hole–neutron star mergers varying both the neutron star mass and the equation of state, using three finite-temperature nuclear models of varying stiffness. Our simulations largely vindicate formulas for ejecta properties but do not find the expected dependence of disk mass on neutron star compaction. We track the early evolution of the accretion disk, largely driven by shocking and fallback inflow, and do find notable equation-of-state effects on the structure of this early-time, neutrino-bright disk

    Insights into hominid evolution from the gorilla genome sequence.

    Get PDF
    Gorillas are humans' closest living relatives after chimpanzees, and are of comparable importance for the study of human origins and evolution. Here we present the assembly and analysis of a genome sequence for the western lowland gorilla, and compare the whole genomes of all extant great ape genera. We propose a synthesis of genetic and fossil evidence consistent with placing the human-chimpanzee and human-chimpanzee-gorilla speciation events at approximately 6 and 10 million years ago. In 30% of the genome, gorilla is closer to human or chimpanzee than the latter are to each other; this is rarer around coding genes, indicating pervasive selection throughout great ape evolution, and has functional consequences in gene expression. A comparison of protein coding genes reveals approximately 500 genes showing accelerated evolution on each of the gorilla, human and chimpanzee lineages, and evidence for parallel acceleration, particularly of genes involved in hearing. We also compare the western and eastern gorilla species, estimating an average sequence divergence time 1.75 million years ago, but with evidence for more recent genetic exchange and a population bottleneck in the eastern species. The use of the genome sequence in these and future analyses will promote a deeper understanding of great ape biology and evolution

    A multimodal cell census and atlas of the mammalian primary motor cortex

    Get PDF
    ABSTRACT We report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex (MOp or M1) as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties, and cellular resolution input-output mapping, integrated through cross-modal computational analysis. Together, our results advance the collective knowledge and understanding of brain cell type organization: First, our study reveals a unified molecular genetic landscape of cortical cell types that congruently integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a unified taxonomy of transcriptomic types and their hierarchical organization that are conserved from mouse to marmoset and human. Third, cross-modal analysis provides compelling evidence for the epigenomic, transcriptomic, and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types and subtypes. Fourth, in situ single-cell transcriptomics provides a spatially-resolved cell type atlas of the motor cortex. Fifth, integrated transcriptomic, epigenomic and anatomical analyses reveal the correspondence between neural circuits and transcriptomic cell types. We further present an extensive genetic toolset for targeting and fate mapping glutamatergic projection neuron types toward linking their developmental trajectory to their circuit function. Together, our results establish a unified and mechanistic framework of neuronal cell type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties
    corecore