2,182 research outputs found

    Normal and Outlying Populations of the Milky Way Stellar Halo at [Fe/H] < –2

    Get PDF
    From detailed abundance analysis of >100 Hamburg/ESO candidate extremely metal-poor (EMP) stars we find 45 with [Fe/H] < –3.0 dex. We identify a heretofore unidentified group: Ca-deficient stars with sub-solar [Ca/Fe] ratios and the lowest neutron-capture abundances; the Ca-deficient group comprises ~10% of the sample, excluding Carbon stars. Our radial velocity distribution shows that the carbon-enhanced stars with no s-process enhancements, CEMP-no, and which do not show C2 bands are not preferentially binary systems. Ignoring Carbon stars, approximately 15% of our sample are strong (≥5σ) outliers in one or more elements between Mg and Ni; this rises to ~19% if very strong (≥10σ) outliers for Sr and Ba are included. Examples include: HE0305–0554 with the lowest [Ba/H] known; HE1012–1540 and HE2323–0256, two (non-velocity variable) C-rich stars with very strong [Mg,Al/Fe] enhancements; and HE1226–1149, an extremely r-process rich star

    α-Synuclein Conformation Affects Its Tyrosine-Dependent Oxidative Aggregation †

    Get PDF
    Oxidative stress and aggregation of the protein α-synuclein are thought to be key factors in Parkinson’s disease. Previous work shows that cytochrome c plus H2O2 causes tyrosine-dependent in vitro peroxidative aggregation of proteins, including α-synuclein. Here, we examine the role of each of α-synuclein’s four tyrosine residues and how the protein’s conformation affects covalent oxidative aggregation. When α-synuclein adopts a collapsed conformation, tyrosine 39 is essential for wild-type-like covalent aggregation. This lone N-terminal tyrosine, however, is not required for wild type-like covalent aggregation in the presence of a denaturant or when α-synuclein is present in non-covalent fibrils. We also show that pre-formed oxidative aggregates are not incorporated into non-covalent fibrils. These data provide insight as to how dityrosine may be formed in Lewy bodies seen in Parkinson’s disease

    α-Synuclein Conformation Affects Its Tyrosine-Dependent Oxidative Aggregation †

    Get PDF
    Oxidative stress and aggregation of the protein α-synuclein are thought to be key factors in Parkinson’s disease. Previous work shows that cytochrome c plus H2O2 causes tyrosine-dependent in vitro peroxidative aggregation of proteins, including α-synuclein. Here, we examine the role of each of α-synuclein’s four tyrosine residues and how the protein’s conformation affects covalent oxidative aggregation. When α-synuclein adopts a collapsed conformation, tyrosine 39 is essential for wild-type-like covalent aggregation. This lone N-terminal tyrosine, however, is not required for wild type-like covalent aggregation in the presence of a denaturant or when α-synuclein is present in non-covalent fibrils. We also show that pre-formed oxidative aggregates are not incorporated into non-covalent fibrils. These data provide insight as to how dityrosine may be formed in Lewy bodies seen in Parkinson’s disease

    19 F NMR Studies of α-Synuclein Conformation and Fibrillation

    Get PDF
    Fibrils of the intrinsically-disordered protein α-synuclein are hallmarks of Parkinson's disease. The fluorescent dye thioflavin T is often used to characterize fibrillation, but this assay may not provide quantitative information about structure and mechanism. To gain such information, we incorporated the 19F-labeled amino acid, 3-fluorotyrosine, into recombinant human α-synuclein at its endogenous tyrosine residues. Tyrosine 39 is in the positively-charged N-terminal region of this 140-residue protein. The other three, tyrosines, 125, 133, and 136, are near the C-terminus. 19F-nuclear magnetic resonance spectroscopy was used to study several properties of labeled α-synuclein, including its conformation; conformational changes induced by urea, spermine, and sodium dodecyl sulfate (SDS); its interaction with SDS micelles; and the kinetics of fibril formation. The results show that the tyrosines are in disordered regions but that there is some structure near position 39 that is disrupted by urea. SDS binding alters the conformation near position 39, but the C-terminal tyrosines are disordered under all conditions. The NMR data also indicate that SDS-micelle bound α-synuclein and the free protein exchange on the 10-ms time scale. Studies of fibrillation show the utility of 19F-labeled NMR. The data indicate that fibrillation is not accompanied by the formation of large quantities of low molecular-weight intermediates. Although dye-binding and 19F NMR data show that 1-mM SDS and 1-mM spermine accelerate aggregation compared to buffer alone, only the NMR data indicate that the species formed in SDS are smaller than those formed in buffer or buffer plus spermine. We conclude that 19F NMR spectroscopy is useful for obtaining residue-level, quantitative information about the structure, binding, and aggregation of α-synuclein

    Protein 19 F NMR in Escherichia coli

    Get PDF
    Although over expression and 15N enrichment facilitate the observation of resonances from disordered proteins in Escherichia coli, 15N enrichment alone is insufficient for detecting most globular proteins. Here we explain this dichotomy and overcome the problem while extending the capability of in-cell NMR by using 19F labeled proteins. Resonances from small (~10 kDa) globular proteins containing the amino acid analog 3-fluoro-tyrosine can be observed in cells, but for larger proteins the 19F resonances are broadened beyond detection. Incorporating the amino acid analog trifluoromethyl-L-phenylalanine allows larger proteins (up to 100 kDa) to be observed in cells. We also show that site specific structural and dynamic information about both globular and disordered proteins can be obtained inside cells by using 19F NMR

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at http://www.lsst.org/lsst/sciboo

    Regulation of CLU gene expression by oncogenes and epigenetic factors implications for tumorigenesis

    Get PDF
    In no other field has the function of clusterin (CLU) been more controversial than in cancer genetics. After more than 20 years of research, there is still uncertainty with regard to the role of CLU in human cancers. Some investigators believe CLU to be an oncogene, others-an inhibitor of tumorigenesis. However, owing to the recent efforts of several laboratories, the role of CLU in important cellular processes like proliferation, apoptosis, differentiation, and transformation is beginning to emerge. The "enigmatic" CLU is becoming less so. In this chapter, we will review the work of research teams interested in understanding how CLU is regulated by oncogenic signaling. We will discuss how and under what circumstances oncogenes and epigenetic factors modify CLU expression, with important consequences for mammalian tumorigenesis

    Dysregulation of Cell Polarity Proteins Synergize with Oncogenes or the Microenvironment to Induce Invasive Behavior in Epithelial Cells

    Get PDF
    Changes in expression and localization of proteins that regulate cell and tissue polarity are frequently observed in carcinoma. However, the mechanisms by which changes in cell polarity proteins regulate carcinoma progression are not well understood. Here, we report that loss of polarity protein expression in epithelial cells primes them for cooperation with oncogenes or changes in tissue microenvironment to promote invasive behavior. Activation of ErbB2 in cells lacking the polarity regulators Scribble, Dlg1 or AF-6, induced invasive properties. This cooperation required the ability of ErbB2 to regulate the Par6/aPKC polarity complex. Inhibition of the ErbB2-Par6 pathway was sufficient to block ErbB2-induced invasion suggesting that two polarity hits may be needed for ErbB2 to promote invasion. Interestingly, in the absence of ErbB2 activation, either a combined loss of two polarity proteins, or exposure of cells lacking one polarity protein to cytokines IL-6 or TNFα induced invasive behavior in epithelial cells. We observed the invasive behavior only when cells were plated on a stiff matrix (Matrigel/Collagen-1) and not when plated on a soft matrix (Matrigel alone). Cells lacking two polarity proteins upregulated expression of EGFR and activated Akt. Inhibition of Akt activity blocked the invasive behavior identifying a mechanism by which loss of polarity promotes invasion of epithelial cells. Thus, we demonstrate that loss of polarity proteins confers phenotypic plasticity to epithelial cells such that they display normal behavior under normal culture conditions but display aggressive behavior in response to activation of oncogenes or exposure to cytokines

    Antagomir-17-5p Abolishes the Growth of Therapy-Resistant Neuroblastoma through p21 and BIM

    Get PDF
    We identified a key oncogenic pathway underlying neuroblastoma progression: specifically, MYCN, expressed at elevated level, transactivates the miRNA 17-5p-92 cluster, which inhibits p21 and BIM translation by interaction with their mRNA 3′ UTRs. Overexpression of miRNA 17-5p-92 cluster in MYCN-not-amplified neuroblastoma cells strongly augments their in vitro and in vivo tumorigenesis. In vitro or in vivo treatment with antagomir-17-5p abolishes the growth of MYCN-amplified and therapy-resistant neuroblastoma through p21 and BIM upmodulation, leading to cell cycling blockade and activation of apoptosis, respectively. In primary neuroblastoma, the majority of cases show a rise of miR-17-5p level leading to p21 downmodulation, which is particularly severe in patients with MYCN amplification and poor prognosis. Altogether, our studies demonstrate for the first time that antagomir treatment can abolish tumor growth in vivo, specifically in therapy-resistant neuroblastoma

    Knowledge priorities on climate change and water in the Upper Indus Basin: a horizon scanning exercise to identify the top 100 research questions in social and natural sciences

    Get PDF
    River systems originating from the Upper Indus Basin (UIB) are dominated by runoff from snow and glacier melt and summer monsoonal rainfall. These water resources are highly stressed as huge populations of people living in this region depend on them, including for agriculture, domestic use, and energy production. Projections suggest that the UIB region will be affected by considerable (yet poorly quantified) changes to the seasonality and composition of runoff in the future, which are likely to have considerable impacts on these supplies. Given how directly and indirectly communities and ecosystems are dependent on these resources and the growing pressure on them due to ever-increasing demands, the impacts of climate change pose considerable adaptation challenges. The strong linkages between hydroclimate, cryosphere, water resources, and human activities within the UIB suggest that a multi- and inter-disciplinary research approach integrating the social and natural/environmental sciences is critical for successful adaptation to ongoing and future hydrological and climate change. Here we use a horizon scanning technique to identify the Top 100 questions related to the most pressing knowledge gaps and research priorities in social and natural sciences on climate change and water in the UIB. These questions are on the margins of current thinking and investigation and are clustered into 14 themes, covering three overarching topics of “governance, policy, and sustainable solutions”, “socioeconomic processes and livelihoods”, and “integrated Earth System processes”. Raising awareness of these cutting-edge knowledge gaps and opportunities will hopefully encourage researchers, funding bodies, practitioners, and policy makers to address them
    corecore