187 research outputs found

    A better proof of the Goldman-Parker conjecture

    Full text link
    The Goldman-Parker Conjecture classifies the complex hyperbolic C-reflection ideal triangle groups up to discreteness. We proved the Goldman-Parker Conjecture in [Ann. of Math. 153 (2001) 533--598] using a rigorous computer-assisted proof. In this paper we give a new and improved proof of the Goldman-Parker Conjecture. While the proof relies on the computer for extensive guidance, the proof itself is traditional.Comment: Published by Geometry and Topology at http://www.maths.warwick.ac.uk/gt/GTVol9/paper35.abs.htm

    Systematic comparison of monoclonal versus polyclonal antibodies for mapping histone modifications by ChIP-seq.

    Get PDF
    BackgroundThe robustness of ChIP-seq datasets is highly dependent upon the antibodies used. Currently, polyclonal antibodies are the standard despite several limitations: They are non-renewable, vary in performance between lots and need to be validated with each new lot. In contrast, monoclonal antibody lots are renewable and provide consistent performance. To increase ChIP-seq standardization, we investigated whether monoclonal antibodies could replace polyclonal antibodies. We compared monoclonal antibodies that target five key histone modifications (H3K4me1, H3K4me3, H3K9me3, H3K27ac and H3K27me3) to their polyclonal counterparts in both human and mouse cells.ResultsOverall performance was highly similar for four monoclonal/polyclonal pairs, including when we used two distinct lots of the same monoclonal antibody. In contrast, the binding patterns for H3K27ac differed substantially between polyclonal and monoclonal antibodies. However, this was most likely due to the distinct immunogen used rather than the clonality of the antibody.ConclusionsAltogether, we found that monoclonal antibodies as a class perform equivalently to polyclonal antibodies for the detection of histone post-translational modifications in both human and mouse. Accordingly, we recommend the use of monoclonal antibodies in ChIP-seq experiments

    Human dimensions of ecosystem-based management: Lessons in managing trade-offs from the Northern Shrimp Fishery in Northern Peninsula, Newfoundland

    Get PDF
    The final publication is available at Elsevier via https://dx.doi.org/10.1016/j.marpol.2018.08.018 © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/Fisheries can have significant impacts on the structure and function of marine ecosystems, including impacts on habitats and non-target species. As a result, management agencies face growing calls to account for the ecosystem impacts of fishing, while navigating the political and economic interests of diverse stakeholders. This paper assesses the impacts of two specific factors on the attitudes and well-being of shrimp fishers in the context of a selective fisheries closure designed to protect crabs in the Northern Peninsula of Newfoundland and Labrador, Canada: (1) the species portfolios of fishers; and (2) democratic rulemaking. The results of this analysis suggest that shrimp fishers were more likely to support selective closures for the shrimp fishery if they also fished for crab, and felt they had an influence on the management of the fishery. The results further indicate that species portfolio diversification had a positive and statistically significant impact on the subjective economic well-being of fishers. This study contributes to an emerging literature on the human dimensions of ecosystem-based fisheries management, highlighting opportunities to address trade-offs in fisheries through species diversification and by enhancing the role and influence of fishers in management processes.OceanCanada Partnership through a grant from the Social Science and Humanities Research Council (SSHRC) of Canad

    Different paths to the modern state in Europe: the interaction between domestic political economy and interstate competition

    Get PDF
    Theoretical work on state formation and capacity has focused mostly on early modern Europe and on the experience of western European states during this period. While a number of European states monopolized domestic tax collection and achieved gains in state capacity during the early modern era, for others revenues stagnated or even declined, and these variations motivated alternative hypotheses for determinants of fiscal and state capacity. In this study we test the basic hypotheses in the existing literature making use of the large date set we have compiled for all of the leading states across the continent. We find strong empirical support for two prevailing threads in the literature, arguing respectively that interstate wars and changes in economic structure towards an urbanized economy had positive fiscal impact. Regarding the main point of contention in the theoretical literature, whether it was representative or authoritarian political regimes that facilitated the gains in fiscal capacity, we do not find conclusive evidence that one performed better than the other. Instead, the empirical evidence we have gathered lends supports to the hypothesis that when under pressure of war, the fiscal performance of representative regimes was better in the more urbanized-commercial economies and the fiscal performance of authoritarian regimes was better in rural-agrarian economie

    Identification of nuclear hormone receptor pathways causing insulin resistance by transcriptional and epigenomic analysis

    Get PDF
    Summary Insulin resistance is a sine qua non of Type 2 diabetes (T2D) and a frequent complication of multiple clinical conditions, including obesity, aging, and steroid use, among others. How such a panoply of insults can result in a common phenotype is incompletely understood. Furthermore, very little is known about the transcriptional and epigenetic basis of this disorder, despite evidence that such pathways are likely to play a fundamental role. Here, we compare cell autonomous models of insulin resistance induced by the cytokine tumor necrosis factor-α (TNF) or by the steroid dexamethasone (Dex) to construct detailed transcriptional and epigenomic maps associated with cellular insulin resistance. These data predict that the glucocorticoid receptor and vitamin D receptor are common mediators of insulin resistance, which we validate using gain- and loss-of-function studies. These studies define a common transcriptional and epigenomic signature in cellular insulin resistance enabling the identification of pathogenic mechanisms

    Dominant negative knockout of p53 abolishes ErbB2-dependent apoptosis and permits growth acceleration in human breast cancer cells

    Get PDF
    We previously reported that the ErbB2 oncoprotein prolongs and amplifies growth factor signalling by impairing ligand-dependent downregulation of hetero-oligomerised epidermal growth factor receptors. Here we show that treatment of A431 cells with different epidermal growth factor receptor ligands can cause growth inhibition to an extent paralleling ErbB2 tyrosine phosphorylation. To determine whether such growth inhibition signifies an interaction between the cell cycle machinery and ErbB2-dependent alterations of cell signalling kinetics, we used MCF7 breast cancer cells (which express wild-type p53) to create transient and stable ErbB2 transfectants (MCF7-B2). Compared with parental cells, MCF7-B2 cells are characterised by upregulation of p53, p21WAF and Myc, downregulation of Bcl2, and apoptosis. In contrast, MCF7-B2 cells co-transfected with dominant negative p53 (MCF7-B2/Δp53) exhibit reduced apoptosis and enhanced growth relative to both parental MCF7-B2 and control cells. These data imply that wild-type p53 limits survival of ErbB2-overexpressing breast cancer cells, and suggest that signals of varying length and/or intensity may evoke different cell outcomes depending upon the integrity of cell cycle control genes. We submit that acquisition of cell cycle control defects may play a permissive role in ErbB2 upregulation, and that the ErbB2 overexpression phenotype may in turn select for the survival of cells with p53 mutations or other tumour suppressor gene defects

    De Novo Mutations in SLC1A2 and CACNA1A Are Important Causes of Epileptic Encephalopathies

    Get PDF
    Epileptic encephalopathies (EEs) are the most clinically important group of severe early-onset epilepsies. Next-generation sequencing has highlighted the crucial contribution of de novo mutations to the genetic architecture of EEs as well as to their underlying genetic heterogeneity. Our previous whole-exome sequencing study of 264 parent-child trios revealed more than 290 candidate genes in which only a single individual had a de novo variant. We sought to identify additional pathogenic variants in a subset (n = 27) of these genes via targeted sequencing in an unsolved cohort of 531 individuals with a diverse range of EEs. We report 17 individuals with pathogenic variants in seven of the 27 genes, defining a genetic etiology in 3.2% of this unsolved cohort. Our results provide definitive evidence that de novo mutations in SLC1A2 and CACNA1A cause specific EEs and expand the compendium of clinically relevant genotypes for GABRB3. We also identified EEs caused by genetic variants in ALG13, DNM1, and GNAO1 and report a mutation in IQSEC2. Notably, recurrent mutations accounted for 7/17 of the pathogenic variants identified. As a result of high-depth coverage, parental mosaicism was identified in two out of 14 cases tested with mutant allelic fractions of 5%–6% in the unaffected parents, carrying significant reproductive counseling implications. These results confirm that dysregulation in diverse cellular neuronal pathways causes EEs, and they will inform the diagnosis and management of individuals with these devastating disorders

    Economic Analysis of Labor Markets and Labor Law: An Institutional/Industrial Relations Perspective

    Get PDF

    Different Paths to the Modern State in Europe: The Interaction between Domestic Political Economy and Interstate Competition

    Full text link
    corecore