5 research outputs found

    High cardiomyocyte diversity in human early prenatal heart development

    No full text
    Summary: Cardiomyocytes play key roles during cardiogenesis, but have poorly understood features, especially in prenatal stages. Here, we characterized human prenatal cardiomyocytes, 6.5–7 weeks post-conception, by integrating single-cell RNA sequencing, spatial transcriptomics, and ligand-receptor interaction information. Using a computational workflow developed to dissect cell type heterogeneity, localize cell types, and explore their molecular interactions, we identified eight types of developing cardiomyocyte, more than double compared to the ones identified in the Human Developmental Cell Atlas. These have high variability in cell cycle activity, mitochondrial content, and connexin gene expression, and are differentially distributed in the ventricles, including outflow tract, and atria, including sinoatrial node. Moreover, cardiomyocyte ligand-receptor crosstalk is mainly with non-cardiomyocyte cell types, encompassing cardiogenesis-related pathways. Thus, early prenatal human cardiomyocytes are highly heterogeneous and develop unique location-dependent properties, with complex ligand-receptor crosstalk. Further elucidation of their developmental dynamics may give rise to new therapies

    Circulating neuregulin1-beta in heart failure with preserved and reduced left ventricular ejection fraction

    Get PDF
    International audienceAims - Neuregulin1-β (NRG1-β) is released from microvascular endothelial cells in response to inflammation with compensatory cardioprotective effects. Circulating NRG1-β is elevated in heart failure (HF) with reduced ejection fraction (HFrEF) but not studied in HF with preserved EF (HFpEF). Methods and results - Circulating NRG1-β was quantified in 86 stable patients with HFpEF (EF ≥45% and N-terminal pro-brain natriuretic peptide >300 ng/L), in 86 patients with HFrEF prior to and after left ventricular assist device (LVAD) and/or heart transplantation (HTx) and in 21 healthy controls. Association between NRG1-β and the composite outcome of all-cause mortality/HF hospitalization in HFpEF and all-cause mortality/HTx/LVAD implantation in HFrEF with and without ischaemia assessed as macrovascular coronary artery disease was assessed. In HFpEF, median (25th-75th percentile) NRG1-β was 6.5 (2.1-11.3) ng/mL; in HFrEF, 3.6 (2.1-7.6) ng/mL (P = 0.035); after LVAD, 1.7 (0.9-3.6) ng/mL; after HTx 2.1 (1.4-3.6) ng/mL (overall P < 0.001); and in controls, 29.0 (23.1-34.3) ng/mL (P = 0.001). In HFrEF, higher NRG1-β was associated with worse outcomes (hazard ratio per log increase 1.45, 95% confidence interval 1.04-2.03, P = 0.029), regardless of ischaemia. In HFpEF, the association of NRG1-β with outcomes was modified by ischaemia (log-rank P = 0.020; P = 0.553) such that only in ischaemic patients, higher NRG1-β was related to worse outcomes. In contrast, in patients without ischaemia, higher NRG1-β trended towards better outcomes (hazard ratio 0.71, 95% confidence interval 0.48-1.05, P = 0.085). Conclusions - Neuregulin1-β was reduced in HFpEF and further reduced in HFrEF. The opposing relationships of NRG1-β with outcomes in non-ischaemic HFpEF compared with HFrEF and ischaemic HFpEF may indicate compensatory increases of cardioprotective NRG1-β from microvascular endothelial dysfunction in the former (non-ischaemic HFpEF), but this compensatory mechanism is overwhelmed by the presence of ischaemia in the latter (HFrEF and ischaemic HFpEF)

    Wnt/β-Catenin Stimulation and Laminins Support Cardiovascular Cell Progenitor Expansion from Human Fetal Cardiac Mesenchymal Stromal Cells

    Get PDF
    The intrinsic regenerative capacity of human fetal cardiac mesenchymal stromal cells (MSCs) has not been fully characterized. Here we demonstrate that we can expand cells with characteristics of cardiovascular progenitor cells from the MSC population of human fetal hearts. Cells cultured on cardiac muscle laminin (LN)-based substrata in combination with stimulation of the canonical Wnt/β-catenin pathway showed increased gene expression of ISL1, OCT4, KDR, and NKX2.5. The majority of cells stained positive for PDGFR-α, ISL1, and NKX2.5, and subpopulations also expressed the progenitor markers TBX18, KDR, c-KIT, and SSEA-1. Upon culture of the cardiac MSCs in differentiation media and on relevant LNs, portions of the cells differentiated into spontaneously beating cardiomyocytes, and endothelial and smooth muscle-like cells. Our protocol for large-scale culture of human fetal cardiac MSCs enables future exploration of the regenerative functions of these cells in the context of myocardial injury in vitro and in vivo
    corecore