54 research outputs found

    Biotic and Human Vulnerability to Projected Changes in Ocean Biogeochemistry over the 21st Century

    Get PDF
    Mora, Camilo ... et al.-- 14 pages, 6 figures, 1 tableOngoing greenhouse gas emissions can modify climate processes and induce shifts in ocean temperature, pH, oxygen concentration, and productivity, which in turn could alter biological and social systems. Here, we provide a synoptic global assessment of the simultaneous changes in future ocean biogeochemical variables over marine biota and their broader implications for people. We analyzed modern Earth System Models forced by greenhouse gas concentration pathways until 2100 and showed that the entire world's ocean surface will be simultaneously impacted by varying intensities of ocean warming, acidification, oxygen depletion, or shortfalls in productivity. In contrast, only a small fraction of the world's ocean surface, mostly in polar regions, will experience increased oxygenation and productivity, while almost nowhere will there be ocean cooling or pH elevation. We compiled the global distribution of 32 marine habitats and biodiversity hotspots and found that they would all experience simultaneous exposure to changes in multiple biogeochemical variables. This superposition highlights the high risk for synergistic ecosystem responses, the suite of physiological adaptations needed to cope with future climate change, and the potential for reorganization of global biodiversity patterns. If co-occurring biogeochemical changes influence the delivery of ocean goods and services, then they could also have a considerable effect on human welfare. Approximately 470 to 870 million of the poorest people in the world rely heavily on the ocean for food, jobs, and revenues and live in countries that will be most affected by simultaneous changes in ocean biogeochemistry. These results highlight the high risk of degradation of marine ecosystems and associated human hardship expected in a future following current trends in anthropogenic greenhouse gas emissions. © 2013 Mora et al.Peer Reviewe

    Ecosistemas de las profundidades marinas: Reservorio privilegiado de la biodiversidad y desafíos tecnológicos

    Get PDF
    30 páginasFinancial support of the BBVA FoundationPeer reviewe

    Integrated study of Mediterranean deep canyons: Novel results and future challenges

    Get PDF
    This volume compiles a number of scientific papers resulting from a sustained multidisciplinary research effort of the deep-sea ecosystem in the Mediterranean Sea. This started 20 years ago and peaked over the last few years thanks to a number of Spanish and European projects such as PROMETEO, DOS MARES, REDECO, GRACCIE, HERMES, HERMIONE and PERSEUS, amongst others. The geographic focus of most papers is on the NW Mediterranean Sea including the Western Gulf of Lion and the North Catalan margin, with a special attention to submarine canyons, in particular the Blanes and Cap de Creus canyons. This introductory article to the Progress in Oceanography special issue on "Mediterranean deep canyons" provides background information needed to better understand the individual papers forming the volume, comments previous reference papers related to the main topics here addressed, and finally highlights the existing relationships between atmospheric forcing, oceanographic processes, seafloor physiography, ecosystem response, and litter and chemical pollution. This article also aims at constituting a sort of glue, in terms of existing knowledge and concepts and novel findings, linking together the other twenty papers in the volume, also including some illustrative figures. The main driving ideas behind this special issue, particularly fitting to the study area of the NW Mediterranean Sea, could be summarized as follows: (i) the atmosphere and the deep-sea ecosystem are connected through oceanographic processes originating in the coastal area and the ocean surface, which get activated at the occasion of high-energy events leading to fast transfers of matter and energy to the deep; (ii) shelf indented submarine canyons play a pivotal role in such transfers, which involve dense water, sedimentary particles, organic matter, litter and chemical pollutants; (iii) lateral inputs (advection) from the upper continental margin contributes significantly to the formation of intermediate and deep-water masses, and the associated fluxes of matter and energy are a main driver of deep-sea ecosystems; (iv) deep-sea organisms are highly sensitive to the arrival of external inputs, starting from the lowest food web levels and propagating upwards as time passes, which also relies upon the biology, nutritional needs and life expectancy of each individual species; and (v) innovative knowledge gained through such multidisciplinary research is of the utmost significance for an improved management of deep-sea living resources, such as the highly priced red shrimp Aristeus antennatus, for which a pilot management plan largely based in the findings described here and in related articles has been recently published (BOE, 2013). The researchers involved in such challenging endeavour have learnt tremendously from the results obtained so far and from each other, but are fully aware that there are still many unsolved questions. That is why this introductory article also includes "Future challenges" both in the title and as an individual section at the end, to express that there is still a long way to go

    Submarine canyons in the Catalan Sea (NW Mediterranean): Megafaunal biodiversity patterns and anthropogenic threats

    Get PDF
    12 pages, 13 figuresThe continental margin of the Catalonia is crossed by several submarine canyons of different evolutionary history (Fig. 1) (Canals et al., 2004a). The main characteristic of the circulation pattern on the Catalan coast is a slope current referred to as the Northern current, which is associated with a shelf–slope density front that in this area flows mainly towards the southwest (Font et al., 1988). This baroclinic current separates the low-salinity shelf waters from the denser open-sea saline watersPeer reviewe

    Habitat features and their influence on the restoration potential of marine habitats in Europe

    Get PDF
    To understand the restoration potential of degraded habitats, it is important to know the key processes and habitat features that allow for recovery after disturbance. As part of the EU (Horizon 2020) funded MERCES project, a group of European experts compiled and assessed current knowledge, from both past and ongoing restoration efforts, within the Mediterranean Sea, the Baltic Sea, and the North-East Atlantic Ocean. The aim was to provide an expert judgment of how different habitat features could impact restoration success and enhance the recovery of marine habitats. A set of biological and ecological features (i.e., life-history traits, population connectivity, spatial distribution, structural complexity, and the potential for regime shifts) were identified and scored according to their contribution to the successful accomplishment of habitat restoration for five habitats: seagrass meadows, kelp forests, Cystoseira macroalgal beds, coralligenous assemblages and cold-water coral habitats. The expert group concluded that most of the kelp forests features facilitate successful restoration, while the features for the coralligenous assemblages and the cold-water coral habitat did not promote successful restoration. For the other habitats the conclusions were much more variable. The lack of knowledge on the relationship between acting pressures and resulting changes in the ecological state of habitats is a major challenge for implementing restoration actions. This paper provides an overview of essential features that can affect restoration success in marine habitats of key importance for valuable ecosystem services

    Reproductive biology of Alvinocaris muricola (Decapoda: Caridea: Alvinocarididae) from cold seep in the Congo Basin

    Get PDF
    10 pages, 6 figures, 2 tablesThe caridean shrimp Alvinocaris muricola has been observed forming high density populations over mussel beds on the giant pockmark cold seep site Regab in the Gulf of Guinea at 3150m depth. Samples were collected using the ROV Victor 6000, a beam trawl and a TV grab from two sites. The specimens were sexed and measured for population structure analysis. In one sample the sex ratio was 1:1, but the other sample had a sex ratio significantly biased towards females. The maximum size of females is larger than males. A sub-sample was used for gametogenesis and fecundity analysis. The oogenesis and spermatogenesis of A. muricola is characteristic of caridean shrimps. The oogonia proliferate from the germinal epithelium and develop into previtellogenic oocytes that migrate to the growth zone. Vitellogenesis starts at 80-100 μm oocyte size and the developing oocytes are surrounded by a monolayer of accessory cells.The maximum oocyte size was 515 μm. There was no evidence of synchrony in oocyte development, with all oocyte stages present in all ovaries analysed. However, seasonal sampling would be necessary to confirm the lack of seasonality in reproduction. In males, the sperm develops in sperm sacs in the testis. As in all caridean shrimp, the broods of A. muricola are held on the pleopods P11 to P14. Total fecundity was related to female size and ranged between 1432 and 5798 embryos. Within a brood all embryos are at the same stage of development, but three different stages were identified in different females, with no clear seasonal trend. The embryos were small, with mean dimensions of 0.66x0.55 mm, suggesting planktotrophic larvae and a potential extended larval developmentPeer reviewe

    Descubrimientos derivados de la Exploración del Océano Profundo

    No full text
    International Symposium: The Exploration of the Ocean: Achievements and Challenges, 13-14 June 2013, MadridPeer Reviewe

    Reproductive biology and recruitment in the deep-sea fish community of the North-Western Mediterranean continental margin

    No full text
    13th International Deep-Sea Biology Symposium, 3-7 December 2012, Wellington, New ZealandPeer Reviewe

    ChEsSo - 2009 : Exploració de les aigües profundes Antàrtiques en búsca de volcans, surgències fredes i fauna relacionada

    No full text
    Diario de la campaña oceanográfica ChEsSo (ChEss in the Southern Ocean), a bordo del buque oceanográfico RRS James Clark Ross del 12 de enero al 18 de febrero del 2009, publicado en la página web de ICM Divulga.-- 23 pages, figuresLas fuentes hidrotermales y surgencias frías son sistemas de volcanes profundos, helados y altamente tóxicos localizados por primera vez en el Pacífico en el año 1977. A pesar de ser un lugar del océano con características muy peculiares que podrían parecer demasiado extremas para la vida (variaciones de temperatura entre 2 ºC y 400 ºC en unos pocos cm, o toxicidad de los elementos hallados en los fluidos hidrotermales), los científicos han descubierto que estos ecosistemas albergan una fauna muy rica y exótica. Ulteriores estudios han permitido averiguar que los animales que viven en estos lugares, tienen relación simbióticas (o sea, de beneficio mutuo) con algunos microorganismos capaces de utilizar la energía del sulfuros de hidrógeno y metano) que proceden de los líquidos de las fumarolas, para producir materia orgánica en un proceso llamado "quimiosíntesis". Hasta la fecha, ya se han localizado sistemas de este tipo también en el Atlántico (1984), en el Índico (2000) y en el Océano Ártico. En la actualidad, los científicos que estudian las zonas profundas del océano están tratando de encontrar las piezas que faltan para terminar el rompecabezas global que explique la razón de los “patrones biogeográficos” observados. En otras palabras, explicar como se distribuyen los animales en nuestro planeta. Han descubierto que la dominancia de las especies varia en función de la fuente hidrotermal. Por ejemplo, los gusanos tubícolas gigantes, Riftia pachyptilla, se encuentran en algunas fumarolas del Pacifico pero nunca se encontraron en fumarolas de los océanos Atlántico, Índico o Ártico. Durante esta campaña oceanográfica a bordo del buque de investigación Británico RRS James Clark Ross, los investigadores exploraron los fondos del Océano Austral, para localizar y eventualmente estudiar fuentes hidrotermales y surgencias frías. Esta es la primera vez que exploró la vida animal en las fuentes hidrotermales y surgencias frías de la Antártida. - Proyecto y participantes: · Objetivos del Proyecto · En esta primera campaña... - Diario de campaña: · 11 de enero 2009. Punta Arenas · 12 de Enero 2009. Pingüinos, Reas y Delfines del sur de Chile · 15 de Enero 2009. Parada inesperada en las Falkland (Port Stanley: 51º40S 59º51W) · · 21 de Enero 2009. El equipo se prepara para “oler” las fuentes hidrotermales y frías · 22 de Enero 2009. East Scotia Ridge. ¡Empieza la diversión! ·24 de Enero 2009. Tormenta en el Océano austral... · 27 de Enero 2009. La búsqueda de fuentes hidrotermales continúa... · 4 de Febrero 2009. Sigue la búsqueda de fuentes hidrotermales rodeados de icebergs y pingüinos! · 8 de Febrero 2009. Explorando un cráter entre las islas Cook y Thule · 10 de Febrero 2009. Explorando un cráter en la montaña submarina Kemp · 14 de Febrero 2009. Box-corer para muestras de sedimento profundo · 15 de Febrero 2009. Visita a la isla de South Georgia y ...¡camino a casa!Peer reviewe
    corecore