8 research outputs found

    Carbon Metabolism of Enterobacterial Human Pathogens Growing in Epithelial Colorectal Adenocarcinoma (Caco-2) Cells

    Get PDF
    Analysis of the genome sequences of the major human bacterial pathogens has provided a large amount of information concerning their metabolic potential. However, our knowledge of the actual metabolic pathways and metabolite fluxes occurring in these pathogens under infection conditions is still limited. In this study, we analysed the intracellular carbon metabolism of enteroinvasive Escherichia coli (EIEC HN280 and EIEC 4608-58) and Salmonella enterica Serovar Typhimurium (Stm 14028) replicating in epithelial colorectal adenocarcinoma cells (Caco-2). To this aim, we supplied [U-13C6]glucose to Caco-2 cells infected with the bacterial strains or mutants thereof impaired in the uptake of glucose, mannose and/or glucose 6-phosphate. The 13C-isotopologue patterns of protein-derived amino acids from the bacteria and the host cells were then determined by mass spectrometry. The data showed that EIEC HN280 growing in the cytosol of the host cells, as well as Stm 14028 replicating in the Salmonella-containing vacuole (SCV) utilised glucose, but not glucose 6-phosphate, other phosphorylated carbohydrates, gluconate or fatty acids as major carbon substrates. EIEC 4608-58 used C3-compound(s) in addition to glucose as carbon source. The labelling patterns reflected strain-dependent carbon flux via glycolysis and/or the Entner-Doudoroff pathway, the pentose phosphate pathway, the TCA cycle and anapleurotic reactions between PEP and oxaloacetate. Mutants of all three strains impaired in the uptake of glucose switched to C3-substrate(s) accompanied by an increased uptake of amino acids (and possibly also other anabolic monomers) from the host cell. Surprisingly, the metabolism of the host cells, as judged by the efficiency of 13C-incorporation into host cell amino acids, was not significantly affected by the infection with either of these intracellular pathogens

    ‘Isotopo’ a database application for facile analysis and management of mass isotopomer data

    Get PDF
    The composition of stable-isotope labelled isotopologues/isotopomers in metabolic products can be measured by mass spectrometry and supports the analysis of pathways and fluxes. As a prerequisite, the original mass spectra have to be processed, managed and stored to rapidly calculate, analyse and compare isotopomer enrichments to study, for instance, bacterial metabolism in infection. For such applications, we provide here the database application ‘Isotopo’. This software package includes (i) a database to store and process isotopomer data, (ii) a parser to upload and translate different data formats for such data and (iii) an improved application to process and convert signal intensities from mass spectra of 13C^{13}C-labelled metabolites such as tertbutyldimethylsilyl-derivatives of amino acids. Relative mass intensities and isotopomer distributions are calculated applying a partial least square method with iterative refinement for high precision data. The data output includes formats such as graphs for overall enrichments in amino acids. The package is user-friendly for easy and robust data management of multiple experiments

    Pyruvate Carboxylase Plays a Crucial Role in Carbon Metabolism of Extra- and Intracellularly Replicating Listeria monocytogenes▿

    No full text
    The human pathogen L. monocytogenes is a facultatively intracellular bacterium that survives and replicates in the cytosol of many mammalian cells. The listerial metabolism, especially under intracellular conditions, is still poorly understood. Recent studies analyzed the carbon metabolism of L. monocytogenes by the 13C isotopologue perturbation method in a defined minimal medium containing [U-13C6]glucose. It was shown that these bacteria produce oxaloacetate mainly by carboxylation of pyruvate due to an incomplete tricarboxylic acid cycle. Here, we report that a pycA insertion mutant defective in pyruvate carboxylase (PYC) still grows, albeit at a reduced rate, in brain heart infusion (BHI) medium but is unable to multiply in a defined minimal medium with glucose or glycerol as a carbon source. Aspartate and glutamate of the pycA mutant, in contrast to the wild-type strain, remain unlabeled when [U-13C6]glucose is added to BHI, indicating that the PYC-catalyzed carboxylation of pyruvate is the predominant reaction leading to oxaloacetate in L. monocytogenes. The pycA mutant is also unable to replicate in mammalian cells and exhibits high virulence attenuation in the mouse sepsis model

    Cross-talk between Type Three Secretion System and Metabolism in Yersinia*S⃞

    Get PDF
    Pathogenic yersiniae utilize a type three secretion system (T3SS) to inject Yop proteins into host cells in order to undermine their immune response. YscM1 and YscM2 proteins have been reported to be functionally equivalent regulators of the T3SS in Yersinia enterocolitica. Here, we show by affinity purification, native gel electrophoresis and small angle x-ray scattering that both YscM1 and YscM2 bind to phosphoenolpyruvate carboxylase (PEPC) of Y. enterocolitica. Under in vitro conditions, YscM1, but not YscM2, was found to inhibit PEPC with an apparent IC50 of 4 ÎŒm (Ki = 1 ÎŒm). To analyze the functional roles of PEPC, YscM1, and YscM2 in Yop-producing bacteria, cultures of Y. enterocolitica wild type and mutants defective in the formation of PEPC, YscM1, or YscM2, respectively, were grown under low calcium conditions in the presence of [U-13C6]glucose. The isotope compositions of secreted Yop proteins and nine amino acids from cellular proteins were analyzed by mass spectrometry. The data indicate that a considerable fraction of oxaloacetate used as precursor for amino acids was derived from [13C3]phosphoenolpyruvate by the catalytic action of PEPC in the wild-type strain but not in the PEPC- mutant. The data imply that PEPC is critically involved in replenishing the oxaloacetate pool in the citrate cycle under virulence conditions. In the YscM1- and YscM2- mutants, increased rates of pyruvate formation via glycolysis or the Entner-Doudoroff pathway, of oxaloacetate formation via the citrate cycle, and of amino acid biosynthesis suggest that both regulators trigger the central metabolism of Y. enterocolitica. We propose a “load-and-shoot cycle” model to account for the cross-talk between T3SS and metabolism in pathogenic yersiniae

    FliA expression analysis and influence of the regulatory proteins RpoN, FleQ and FliA on virulence and in vivo fitness in Legionella pneumophila

    No full text
    In Legionella pneumophila, the regulation of the flagellum and the expression of virulence traits are linked. FleQ, RpoN and FliA are the major regulators of the flagellar regulon. We demonstrated here that all three regulatory proteins mentioned (FleQ, RpoN and FliA) are necessary for full in vivo fitness of L. pneumophila strains Corby and Paris. In this study, we clarified the role of FleQ for fliA expression from the level of mRNA toward protein translation. FleQ enhanced fliA expression, but FleQ and RpoN were not necessary for basal expression. In addition, we identified the initiation site of fliA in L. pneumophila and found a putative σ(70) promoter element localized upstream. The initiation site was not influenced in the ΔfleQ or ΔrpoN mutant strain. We demonstrated that there is no significant difference in the regulation of fliA between strains Corby and Paris, but the FleQ-dependent induction of fliA transcription in the exponential phase is stronger in strain Paris than in strain Corby. In addition, we showed for the first time the presence of a straight hook at the pole of the non-flagellated ΔfliA and ΔfliD mutant strains by electron microscopy, indicating the presence of an intact basal body in these strains

    Comparative risk of major congenital malformations with eight different antiepileptic drugs: a prospective cohort study of the EURAP registry

    No full text
    Background: Evidence for the comparative teratogenic risk of antiepileptic drugs is insufficient, particularly in relation to the dosage used. Therefore, we aimed to compare the occurrence of major congenital malformations following prenatal exposure to the eight most commonly used antiepileptic drugs in monotherapy. Methods: We did a longitudinal, prospective cohort study based on the EURAP international registry. We included data from pregnancies in women who were exposed to antiepileptic drug monotherapy at conception, prospectively identified from 42 countries contributing to EURAP. Follow-up data were obtained after each trimester, at birth, and 1 year after birth. The primary objective was to compare the risk of major congenital malformations assessed at 1 year after birth in offspring exposed prenatally to one of eight commonly used antiepileptic drugs (carbamazepine, lamotrigine, levetiracetam, oxcarbazepine, phenobarbital, phenytoin, topiramate, and valproate) and, whenever a dose dependency was identified, to compare the risks at different dose ranges. Logistic regression was used to make direct comparisons between treatments after adjustment for potential confounders and prognostic factors. Findings: Between June 20, 1999, and May 20, 2016, 7555 prospective pregnancies met the eligibility criteria. Of those eligible, 7355 pregnancies were exposed to one of the eight antiepileptic drugs for which the prevalence of major congenital malformations was 142 (10·3%) of 1381 pregnancies for valproate, 19 (6·5%) of 294 for phenobarbital, eight (6·4%) of 125 for phenytoin, 107 (5·5%) of 1957 for carbamazepine, six (3·9%) of 152 for topiramate, ten (3·0%) of 333 for oxcarbazepine, 74 (2·9%) of 2514 for lamotrigine, and 17 (2·8%) of 599 for levetiracetam. The prevalence of major congenital malformations increased with the dose at time of conception for carbamazepine (p=0·0140), lamotrigine (p=0·0145), phenobarbital (p=0·0390), and valproate (
    corecore