23 research outputs found

    Strategies to diagnose ovarian cancer: new evidence from phase 3 of the multicentre international IOTA study

    Get PDF
    Background: To compare different ultrasound-based international ovarian tumour analysis (IOTA) strategies and risk of malignancy index (RMI) for ovarian cancer diagnosis using a meta-analysis approach of centre-specific data from IOTA3. Methods: This prospective multicentre diagnostic accuracy study included 2403 patients with 1423 benign and 980 malignant adnexal masses from 2009 until 2012. All patients underwent standardised transvaginal ultrasonography. Test performance of RMI, subjective assessment (SA) of ultrasound findings, two IOTA risk models (LR1 and LR2), and strategies involving combinations of IOTA simple rules (SRs), simple descriptors (SDs) and LR2 with and without SA was estimated using a meta-analysis approach. Reference standard was histology after surgery. Results: The areas under the receiver operator characteristic curves of LR1, LR2, SA and RMI were 0.930 (0.917–0.942), 0.918 (0.905–0.930), 0.914 (0.886–0.936) and 0.875 (0.853–0.894). Diagnostic one-step and two-step strategies using LR1, LR2, SR and SD achieved summary estimates for sensitivity 90–96%, specificity 74–79% and diagnostic odds ratio (DOR) 32.8–50.5. Adding SA when IOTA methods yielded equivocal results improved performance (DOR 57.6–75.7). Risk of Malignancy Index had sensitivity 67%, specificity 91% and DOR 17.5. Conclusions: This study shows all IOTA strategies had excellent diagnostic performance in comparison with RMI. The IOTA strategy chosen may be determined by clinical preference

    Echocardiography practice, training and accreditation in the intensive care: document for the World Interactive Network Focused on Critical Ultrasound (WINFOCUS)

    Get PDF
    Echocardiography is increasingly used in the management of the critically ill patient as a non-invasive diagnostic and monitoring tool. Whilst in few countries specialized national training schemes for intensive care unit (ICU) echocardiography have been developed, specific guidelines for ICU physicians wishing to incorporate echocardiography into their clinical practice are lacking. Further, existing echocardiography accreditation does not reflect the requirements of the ICU practitioner. The WINFOCUS (World Interactive Network Focused On Critical UltraSound) ECHO-ICU Group drew up a document aimed at providing guidance to individual physicians, trainers and the relevant societies of the requirements for the development of skills in echocardiography in the ICU setting. The document is based on recommendations published by the Royal College of Radiologists, British Society of Echocardiography, European Association of Echocardiography and American Society of Echocardiography, together with international input from established practitioners of ICU echocardiography. The recommendations contained in this document are concerned with theoretical basis of ultrasonography, the practical aspects of building an ICU-based echocardiography service as well as the key components of standard adult TTE and TEE studies to be performed on the ICU. Specific issues regarding echocardiography in different ICU clinical scenarios are then described

    A Porcine Pneumothorax Model for Teaching Ultrasound Diagnostics

    Get PDF
    Objectives: Ultrasound (US) is a sensitive diagnostic tool for detecting pneumothorax (PTX), but methods are needed to optimally teach this technique outside of direct patient care. In training and research settings, porcine PTX models are sometimes used, but the description of the PTX topography in these models is lacking. The study purpose was to define the distribution of air using the reference imaging standard computed tomography (CT), to see if pleural insufflation of air into a live anaesthetized pig truly imitates a PTX in an injured patient. Methods: A unilateral catheter was inserted into one pleural cavity of each of 20 pigs, and 500 mL of air was insufflated. After a complete thoracic CT scan, the anterior, lateral, medial, basal, apical, and posterior components of the PTXs were compared. The amount of air in each location was quantified by measuring the distance from the lung edge to the chest wall (LE-CW). A supine anteroposterior chest radiograph (CXR) was taken from each model and interpreted by a senior radiologist, and the image results were compared to CT. Results: All 20 hemithoraces with PTX were correctly identified by CT, while six remained occult after interpreting the CXRs. The PTXs were anterior (100%), lateral (95%), medial (80%), basal (60%), apical (45%), and posterior (15%). The major proportion of the insufflated 500-mL volume was found in the anterior, medial, and basal recesses. Conclusions: The authors found the distribution of the intrathoracic air to be similar between a porcine model and that to be expected in human trauma patients, all having predominantly anterior PTX topographies. In a training facility, the model is easy to set up and can be scanned by the participants multiple times. To acquire the necessary skills to perform thoracic US examinations for PTX, the porcine models could be useful
    corecore