28 research outputs found

    Enhanced Methylation Analysis by Recovery of Unsequenceable Fragments.

    Get PDF
    Bisulfite sequencing is a valuable tool for mapping the position of 5-methylcytosine in the genome at single base resolution. However, the associated chemical treatment causes strand scission, which depletes the number of sequenceable DNA fragments in a library and thus necessitates PCR amplification. The AT-rich nature of the library generated from bisulfite treatment adversely affects this amplification, resulting in the introduction of major biases that can confound methylation analysis. Here, we report a method that enables more accurate methylation analysis, by rebuilding bisulfite-damaged components of a DNA library. This recovery after bisulfite treatment (ReBuilT) approach enables PCR-free bisulfite sequencing from low nanogram quantities of genomic DNA. We apply the ReBuilT method for the first whole methylome analysis of the highly AT-rich genome of Plasmodium berghei. Side-by-side comparison to a commercial protocol involving amplification demonstrates a substantial improvement in uniformity of coverage and reduction of sequence context bias. Our method will be widely applicable for quantitative methylation analysis, even for technically challenging genomes, and where limited sample DNA is available.GRM is supported by funding from Trinity College Cambridge and Herchel Smith. DB is supported by funding from the Wellcome Trust and Herchel Smith. EAR is a Herchel Smith Fellow. PVD is a Marie Curie Fellow of the European Union (FP7-PEOPLE-2013-IEF/624885). The Balasubramanian lab is supported by a Senior Investigator Award from the Wellcome Trust (099232/Z/12/Z to SB) and by core funding from Cancer Research UK.This is the final version of the article. It first appeared from PLOS via http://dx.doi.org/10.1371/journal.pone.015232

    In vivo genome-wide profiling reveals a tissue-specific role for 5-formylcytosine.

    Get PDF
    BACKGROUND: Genome-wide methylation of cytosine can be modulated in the presence of TET and thymine DNA glycosylase (TDG) enzymes. TET is able to oxidise 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). TDG can excise the oxidative products 5fC and 5caC, initiating base excision repair. These modified bases are stable and detectable in the genome, suggesting that they could have epigenetic functions in their own right. However, functional investigation of the genome-wide distribution of 5fC has been restricted to cell culture-based systems, while its in vivo profile remains unknown. RESULTS: Here, we describe the first analysis of the in vivo genome-wide profile of 5fC across a range of tissues from both wild-type and Tdg-deficient E11.5 mouse embryos. Changes in the formylation profile of cytosine upon depletion of TDG suggest TET/TDG-mediated active demethylation occurs preferentially at intron-exon boundaries and reveals a major role for TDG in shaping 5fC distribution at CpG islands. Moreover, we find that active enhancer regions specifically exhibit high levels of 5fC, resulting in characteristic tissue-diagnostic patterns, which suggest a role in embryonic development. CONCLUSIONS: The tissue-specific distribution of 5fC can be regulated by the collective contribution of TET-mediated oxidation and excision by TDG. The in vivo profile of 5fC during embryonic development resembles that of embryonic stem cells, sharing key features including enrichment of 5fC in enhancer and intragenic regions. Additionally, by investigating mouse embryo 5fC profiles in a tissue-specific manner, we identify targeted enrichment at active enhancers involved in tissue development.MI is supported by the People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme FP7/2007-2013/under REA grant agreement no. 290123. GRM was supported by Trinity College and Herchel Smith studentships. MB was supported by the CRUK PhD Training Programme in Chemical Biology and Molecular Medicine. DB is supported by funding from the Wellcome Trust and Herchel Smith. The WR lab is supported by BBSRC, MRC, the Wellcome Trust, EU EpiGeneSys and BLUEPRINT. The SB lab is supported by core funding from Cancer Research UK and a Wellcome Trust Senior Investigator Award.This is the final version of the article. It first appeared from BioMed Central via http://dx.doi.org/10.1186/s13059-016-1001-5

    5-Formylcytosine organizes nucleosomes and forms Schiff base interactions with histones in mouse embryonic stem cells.

    Get PDF
    Nucleosomes are the basic unit of chromatin that help the packaging of genetic material while controlling access to the genetic information. The underlying DNA sequence, together with transcription-associated proteins and chromatin remodelling complexes, are important factors that influence the organization of nucleosomes. Here, we show that the naturally occurring DNA modification, 5-formylcytosine (5fC) is linked to tissue-specific nucleosome organization. Our study reveals that 5fC is associated with increased nucleosome occupancy in vitro and in vivo. We demonstrate that 5fC-associated nucleosomes at enhancers in the mammalian hindbrain and heart are linked to elevated gene expression. Our study also reveals the formation of a reversible-covalent Schiff base linkage between lysines of histone proteins and 5fC within nucleosomes in a cellular environment. We define their specific genomic loci in mouse embryonic stem cells and look into the biological consequences of these DNA-histone Schiff base sites. Collectively, our findings show that 5fC is a determinant of nucleosome organization and plays a role in establishing distinct regulatory regions that control transcription

    5-Formylcytosine alters the structure of the DNA double helix.

    Get PDF
    The modified base 5-formylcytosine (5fC) was recently identified in mammalian DNA and might be considered to be the 'seventh' base of the genome. This nucleotide has been implicated in active demethylation mediated by the base excision repair enzyme thymine DNA glycosylase. Genomics and proteomics studies have suggested an additional role for 5fC in transcription regulation through chromatin remodeling. Here we propose that 5fC might affect these processes through its effect on DNA conformation. Biophysical and structural analysis revealed that 5fC alters the structure of the DNA double helix and leads to a conformation unique among known DNA structures including those comprising other cytosine modifications. The 1.4-Å-resolution X-ray crystal structure of a DNA dodecamer comprising three 5fCpG sites shows how 5fC changes the geometry of the grooves and base pairs associated with the modified base, leading to helical underwinding.E.-A.R. is supported as a Herchel Smith Fellow. The Balasubramanian laboratory is supported by a Senior Investigator Award from the Wellcome Trust (099232/Z/12/Z to S.B.), and it also receives core funding from Cancer Research UK (C9681/A11961 to S.B.). D.Y.C. is supported by the Crystallographic X-ray Facility (CXF) at the Department of Biochemistry, University of Cambridge, and B.F.L. is supported by the Wellcome Trust (076846/Z/05/A to B.F.L.). We thank the staff of Soleil and Diamond Light Source for use of facilities. We thank C. Calladine for stimulating discussions.This is the accepted manuscript for a paper published in Nature Structural & Molecular Biology 22, 44–49 (2015) doi: 10.1038/nsmb.293

    Base resolution maps reveal the importance of 5-hydroxymethylcytosine in a human glioblastoma

    Get PDF
    Aberrant genetic and epigenetic variations drive malignant transformation and are hallmarks of cancer. Using PCR-free sample preparation we achieved the first in-depth whole genome (hydroxyl)-methylcytosine, single-base-resolution maps from a glioblastoma tumour/margin sample of a patient. Our data provide new insights into how genetic and epigenetic variations are interrelated. In the tumour, global hypermethylation with a depletion of 5-hydroxymethylcytosine was observed. The majority of single nucleotide variations were identified as cytosine-to-thymine deamination products within CpG context, where cytosine was preferentially methylated in the margin. Notably, we observe that cells neighbouring tumour cells display epigenetic alterations characteristic of the tumour itself although genetically they appear “normal”. This shows the potential transfer of epigenetic information between cells that contributes to the intratumour heterogeneity of glioblastoma. Together, our reference (epi)-genome provides a human model system for future studies that aim to explore the link between genetic and epigenetic variations in cancer progression.Cancer Research UK 236 (Grant ID: C14303/A17197), Wellcome Trust (Grant ID: 099232/z/12/z

    A non-canonical DNA structure is a binding motif for the transcription factor SP1 in vitro

    Get PDF
    SP1 is a ubiquitous transcription factor that is involved in the regulation of various house-keeping genes. It is known that it acts by binding to a double-stranded consensus motif. Here, we have discovered that SP1 binds also to a non-canonical DNA structure, a G-quadruplex, with high affinity. In particular, we have studied the SP1 binding site within the promoter region of the c-KIT oncogene and found that this site can fold into an anti-parallel two-tetrad G-quadruplex. SP1 pull-down experiments from cellular extracts, together with biophysical binding assays revealed that SP1 has a comparable binding affinity for this G-quadruplex structure and the canonical SP1 duplex sequence. Using SP1 ChIP-on-chip data sets, we have also found that 87% of SP1 binding sites overlap with G-quadruplex forming sequences. Furthermore, while many of these immuoprecipitated sequences (36%) even lack the minimal SP1 consensus motif, 5′-GGGCGG-3′, we have shown that 77% of them are putative G-quadruplexes. Collectively, these data suggest that SP1 is able to bind both, canonical SP1 duplex DNA as well as G-quadruplex structures in vitro and we hypothesize that both types of interactions may occur in cells

    Design, synthesis and biological evaluation of heparin/heparan sulfate analogues as inhibitors of GAG-growth factor interaction

    No full text
    Control of cell proliferation is of fundamental importance to cancer chemotherapy. One of the key signalling events leading to cellular activities (i.e. cell division, proliferation, migration) involves Growth Factors such as Hepatocyte Growth Factor/Scatter Factor (HGF/SF) and Fibroblast Growth Factors (FGFs). They bind to specific transmembrane tyrosine kinase receptors at the cell surface. This can only take place in the presence of heparin and heparan sulfate proteoglycans. The literature in this area is reviewed.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore