40 research outputs found

    Decline of seagrass (Posidonia oceanica) production over two decades in the face of warming of the Eastern Mediterranean Sea

    Get PDF
    * The response of Posidonia oceanica meadows to global warming of the Eastern Mediterranean Sea, where the increase in sea surface temperature (SST) is particularly severe, is poorly investigated. * Here, we reconstructed the long-term P. oceanica production in 60 meadows along the Greek Seas over two decades (1997–2018), using lepidochronology. We determined the effect of warming on production by reconstructing the annual and maximum (i.e. August) SST, considering the role of other production drivers related to water quality (i.e. Chla, suspended particulate matter, Secchi depth). * Grand mean (±SE) production across all sites and the study period was 48 ± 1.1 mg DW per shoot yr−1. Production over the last two decades followed a trajectory of decrease, which was related to the concurrent increase in annual SST and SSTaug. Annual SST \u3e 20°C and SSTaug \u3e 26.5°C was related to production decline (GAMM, P \u3c 0.05), while the rest of the tested factors did not help explain the production pattern. * Our results indicate a persistent and increasing threat for Eastern Mediterranean meadows, drawing attention to management authorities, highlighting the necessity of reducing local impacts to enhance the resilience of seagrass meadows to global change threats

    Seagrass sedimentary deposits as security vaults and time capsules of the human past

    Get PDF
    Seagrass meadows form valuable ecosystems, but are considered to have low cultural value due to limited research efforts in this field. We provide evidence that seagrass deposits play a hitherto unrealized central role in preserving valuable submerged archaeological and historical heritage across the world, while also providing an historical archive of human cultural development over time. We highlight three case studies showing the significance of seagrass in protecting underwater cultural heritage in Denmark, the Mediterranean and Australia. Moreover, we present an overview of additional evidence compiled from the literature. We emphasize that this important role of seagrasses is linked to their capacity to form thick sedimentary deposits, accumulating over time, thereby covering and sealing submerged archaeological heritage. Seagrass conservation and restoration are key to protecting this buried heritage while also supporting the role of seagrass deposits as carbon sinks as well as the many other important ecosystem functions of seagrasses. © 2018, The Author(s)

    Environmental variability and heavy metal concentrations from five lagoons in the Ionian Sea (Amvrakikos Gulf, W Greece)

    Get PDF
    Background: Coastal lagoons are ecosystems of major importance as they host a number of species tolerant to disturbances and they are highly productive. Therefore, these ecosystems should be protected to ensure stability and resilience. The lagoons of Amvrakikos Gulf form one of the most important lagoonal complexes in Greece. The optimal ecological status of these lagoons is crucial for the well-being of the biodiversity and the economic prosperity of the local communities. Thus, monitoring of the area is necessary to detect possible sources of disturbance and restore stability. New information: The environmental variables and heavy metals concentrations, from five lagoons of Amvrakikos Gulf were measured from seasonal samplings and compared to the findings of previous studies in the area, in order to check for possible sources of disturbance. The analysis, showed that i) the values of the abiotic parameters vary with time (season), space (lagoon) and with space over time; ii) the variability of the environmental factors and enrichment in certain elements is naturally induced and no source of contamination is detected in the lagoons

    Seagrass meadows (Posidonia oceanica) distribution and trajectories of change.

    Get PDF
    Posidonia oceanica meadows are declining at alarming rates due to climate change and human activities. Although P. oceanica is considered the most important and well-studied seagrass species of the Mediterranean Sea, to date there has been a limited effort to combine all the spatial information available and provide a complete distribution of meadows across the basin. The aim of this work is to provide a fine-scale assessment of (i) the current and historical known distribution of P. oceanica, (ii) the total area of meadows and (iii) the magnitude of regressive phenomena in the last decades. The outcomes showed the current spatial distribution of P. oceanica, covering a known area of 1,224,707 ha, and highlighted the lack of relevant data in part of the basin (21,471 linear km of coastline). The estimated regression of meadows amounted to 34% in the last 50 years, showing that this generalised phenomenon had to be mainly ascribed to cumulative effects of multiple local stressors. Our results highlighted the importance of enforcing surveys to assess the status and prioritize areas where cost-effective schemes for threats reduction, capable of reversing present patterns of change and ensuring P. oceanica persistence at Mediterranean scale, could be implemented.This study was supported and financed by the Commission of the European Union (DG MARE) within the MAREA Framework contract (Call for tenders MARE/2009/05_Lot1) through the Specific Project MEDISEH (SI2.600741): Mediterranean Sensitive Habitats, that received 568.996 euro. The opinions expressed are those of the authors of the study only and do not represent the Commission’s official position. The European Commission is thankfully acknowledged.This is the final version of the article. It first appeared from NPG via http://dx.doi.org/10.1038/srep1250

    Effects of high temperature and marine heat waves on seagrasses: Is warming affecting the nutritional value of Posidonia oceanica?

    Get PDF
    9 pages, 5 figures, 4 tables.-- Under a Creative Commons licensePrimary producers nutritional content affects the entire food web. Here, changes in nutritional value associated with temperature rise and the occurrence of marine heat waves (MHWs) were explored in the endemic Mediterranean seagrass Posidonia oceanica. The variability of fatty acids (FAs) composition and carbon (C) and nitrogen (N) content were examined during summer 2021 from five Mediterranean sites located at the same latitude but under different thermal environments. The results highlighted a decrease in unsaturated FAs and C/N ratio and an increase of monounsaturated FA (MUFA) and N content when a MHW occurred. By contrast, the leaf biochemical composition seems to be adapted to local water temperature since only few significant changes in MUFA were found and N and C/N had an opposite pattern compared to when a MHW occurs. The projected increase in temperature and frequency of MHW suggest future changes in the nutritional value and palatability of leavesThis research was financially supported by Botany and Plant Science at University of Galway, by the project Marine Habitats Restoration in a Climate Change-impaired Mediterranean Sea [MAHRES] funded by the Italian Ministry of Research under the PRIN 2017 Program (Project N. 2017MHHWBN; CUP: 74I19001320001), by “Fondo di Ateneo per la Ricerca 2019” by the University of Sassari, by PON - National Operational Programme - Research and Innovation 2014–2020, PhDs and research contracts on innovation-related topics and by the project DRESSAGE (MIS5045792) (through the Operational Program ‘Competitiveness, Entrepreneurship and Innovation’ (EPAnEK 2014–2020)Peer reviewe

    Dissolved organic carbon fluxes by seagrass meadows and macroalgal beds

    Get PDF
    Estimates of dissolved organic carbon (DOC) release by marine macrophyte communities (seagrass meadows and macroalgal beds) based on in situ benthic chambers from published and unpublished are compiled in this study. The effect of temperature and light availability on DOC release by macrophyte communities was examined. Almost 85% of the seagrass communities and all of macroalgal communities examined acted as net sources of DOC. Net DOC fluxes in seagrass communities increase positively with water temperature. In macroalgal communities net DOC fluxes under light exceeded those under dark condition, however, this trend was weaker in seagrass communities. Shading of a mixed seagrass meadow in The Philippines led to a significant reduction on the net DOC release when shading was maintained for 6 days compared to only 2 days of shading. Net DOC fluxes increased with increasing community respiration, but were independent of primary production or net community production. The estimated global net DOC flux, and hence export, from marine macrophytes is about 0.158 ± 0.055 or 0.175 ± 0.056 Pg C year−1 depending on the global extent of seagrass meadows considered.This work was funded by the European Commission projects EUROTROPH (contract EVK3-CT-2000-00040), PREDICT (contract IC18-CT98-0292), M&M's (contract EVK3-CT-2000-00044), the Spanish Plan of I+D (REN2001-4977-E) and IBIS project, co-financed by European Social Fund and the Greek Ministry of Development-GSRT.Peer reviewedPeer Reviewe

    Reduced carbon sequestration in a Mediterranean seagrass (Posidonia oceanica) ecosystem impacted by fish farming

    No full text
    We studied the relationship between sediment nutrient enrichment and carbon sequestration, using the ratio of gross primary production to respiration (P/R), in a fish-farming impacted and an unaffected Mediterranean seagrass (Posidonia oceanica) ecosystem in the Aegean Sea, Greece. Carbon (C), nitrogen (N) and phosphorus (P) sedimentation, nutrient pools in sediment and dissolved nutrients in pore water were significantly and positively intercorrelated, indicating close linkage between sedimentation and sediment nutrient pools in seagrass meadows. C, N and P sediment pools were significantly enhanced in the impacted meadow throughout the year, even during winter when fish farming activity was low. In the impacted sediment, the increase in C and N was higher than P, reflecting a faster remineralization and uptake of P than C and N. The ecosystem P/R ratio decreased exponentially with sediment nutrient enrichment. Threshold values are given for C, N and P sedimentation rates and sediment pools, and for N and P concentrations in pore waters, after which P/R ratio in the seagrass meadow decreases below 1, indicating a shift from autotrophy to heterotrophy with sediment nutrient enrichment. Such a regime shift indicates a loss of storage capacity of the seagrass ecosystem, jeopardizing the key role of P. oceanica as a carbon sink in the Mediterranean. © Inter-Research 2011.This work was co-funded by the EUEuropean Social Fund (75%) and the Greek Ministry of Development-GSRT (25%) (IBIS Project).Peer Reviewe

    Epiphyte dynamics and carbon metabolism in a nutrient enriched Mediterranean seagrass (Posidonia oceanica) ecosystem

    No full text
    The study aimed at examining the relationship between epiphyte dynamics and carbon metabolism in seagrass ecosystems under nutrient enrichment. Temporal variability of epiphytes and factors controlling their dynamics (i.e. environmental conditions, substratum availability, substratum stability and herbivore pressure) were assessed in a fish farm impacted and an unaffected Mediterranean seagrass (Posidonia oceanica) meadow in the Aegean Sea (Greece). The factors controlling epiphyte dynamics responded differently to nutrient enrichment and partly interacted, rendering their cumulative effect on epiphyte load difficult to elucidate. Yet epiphytes accumulated on seagrass leaves near to the fish farm throughout the year, contributing 2 times more in above-ground biomass at cages than the control station. Reduction in substratum availability (i.e. decrease in leaf biomass) and increase in herbivore pressure affected epiphyte load, albeit their effects were not strong enough to counterbalance the effect of nutrient input from fish farm effluents. Moderate yet continuous nutrient input possibly stimulated epiphyte growth in excess of herbivory, shifting the control of epiphytes from top-down to bottom-up. Epiphyte accumulation affected carbon metabolism in the seagrass ecosystem by contributing to enhanced dissolved organic carbon (DOC) release, but seagrass loss was so acute that increased epiphyte cover could not counterbalance the decrease in community carbon production which was mainly driven by seagrass decline. © 2011 Elsevier B.V.This work was funded by the General Secretariat for Research and Technology (IBIS Project).Peer Reviewe

    Fish farming enhances biomass and nutrient loss in Posidonia oceanica (L.) Delile

    No full text
    Fish farming impact on the seasonal biomass, carbon and nutrient (nitrogen and phosphorus) balance of the endemic Mediterranean seagrass Posidonia oceanica was assessed in the Aegean Sea (Greece) in order to detect changes in magnitude and fate of seagrass production and nutrient incorporation with organic loading of the meadows. Phosphorus concentration in the leaves, rhizomes and roots was enhanced under the cages throughout the study. Standing biomass was diminished by 64% and carbon, nitrogen and phosphorus standing stock by 64%, 61% and 48%, respectively, under the cages in relation to those at the control. Seagrass production decreased by 68% and element (C, N, P) incorporation by 67%, 58% and 58%, respectively, under the cages. Leaf shedding was reduced by 81% and loss of elements (C, N, and P) through shedding by 82%, 74% and 72%, respectively, under the cages. Leaf and element (C, N, P) residual loss rate, accounting for grazing and mechanical breakage of leaves, was decreased by 79%, 85%, 100% and 96%, respectively, at the control station. At the control station, 13.98 g C m-2 yr-1, 1.91 g N m-2 yr-1 and 0.05 g P m-2 yr-1 were produced in excess of export and loss. In contrast, under the cages 12.69 g C m-2 yr-1, 0.31 g N m-2 yr-1 and 0.04 g P m-2 yr-1 were released from the meadow. Organic loading due to fish farm discharges transformed the seagrass meadow under the cages from a typical sink to a source of organic carbon and nutrients. © 2008 Elsevier Ltd. All rights reserved.This work was funded by the Greek General Secretariat for Research and Technology (IBIS Project) and the European Commission (SESAME Project)Peer Reviewe

    Degrading seagrass (Posidonia oceanica) ecosystems: a source of dissolved matter in the Mediterranean

    No full text
    Diurnal variation of dissolved oxygen (DO), organic and inorganic carbon (DOC, DIC), nitrogen (DON, DIN), and phosphorus (DOP, DIP) flux across the sediment–water interface was assessed in fish farm impacted and pristine seagrass (Posidonia oceanica) meadows in the Aegean Sea (Greece). DIC consumption decreased by 52% and DO production decreased by 60% in the light, suggesting reduced photosynthetic performance of the plant community under the fish cages probably due to organic matter loading. In light there was 4 and 15 times higher release of dissolved inorganic and organic matter, respectively, compared to dark incubations under the cages, indicating that fish farming impact is more intense during daytime. DO was taken up, while DIC was released in the dark in both stations, representing a direct measure of mineralization. Dissolved inorganic matter flux (as the sum of DIN and DIP fluxes) was positively related to DIC flux, rendering mineralization as the main driver of nutrient flux under the cages. On average, the impacted meadow released DIN and DIP both in light and dark, while efflux of dissolved organic matter (as the sum of DOC, DON, and DOP fluxes) increased by 132% in the light and by 21% in the dark, implying that the degrading seagrass meadow is a source of dissolved matter to the surrounding water. Shoot density and leaf production were negatively correlated with both diel DIN and DIP fluxes, showing that meadow regression is accompanied by DIN and DIP release from the sediment. Hence, nutrient efflux can adequately illustrate meadow deterioration and, therefore, can be used as indicator of P. oceanica community health.Este trabajo forma parte del Proyecto IBIS, co-financiado por la UE y el Fondo Social Europeo (75%) y el Ministerio de Desarrollo Griego-GSRT (25%)Peer reviewe
    corecore