20 research outputs found

    Code-based Syndromic Surveillance for Influenzalike Illness by International Classification of Diseases, Ninth Revision

    Get PDF
    ICD-9 codes collected automatically in a syndromic system are sensitive and specific in detecting outbreaks caused by respiratory viruses

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Biosurveillance applying scan statistics with multiple, disparate data sources

    No full text

    With the Bird Banders

    No full text

    Tweeting Fever: Are Tweet Extracts a Valid Surrogate Data Source for Dengue Fever?

    No full text
    OBJECTIVE: To determine whether Twitter data contains information on dengue-like illness and whether the temporal trend of such data correlates with the incidence dengue or dengue-like illness as identified by city and national health authorities. INTRODUCTION: Dengue fever is a major cause of morbidity and mortality in the Republic of the Philippines (RP) and across the world. Early identification of geographic outbreaks can help target intervention campaigns and mitigate the severity of outbreaks. Electronic disease surveillance can improve early identification but, in most dengue endemic areas data pre-existing digital data are not available for such systems. Data must be collected and digitized specifically for electronic disease surveillance. Twitter, however, is heavily used in these areas; for example, the RP is among the top 20 producers of tweets in the world. If social media could be used as a surrogate data source for electronic disease surveillance, it would provide an inexpensive pre-digitized data source for resource-limited countries. This study investigates whether Twitter extracts can be used effectively as a surrogate data source to monitor changes in the temporal trend of dengue fever in Cebu City and the National Capitol Region surrounding Manila (NCR) in the RP. METHODS: We obtained two sources of ground truth incidence for dengue. The first was daily dengue fever incidence for Cebu City and the NCR taken from the Philippines Integrated Disease Surveillance and Response System (PIDSR). The second ground truth source was fever incidence from Cebu City for 2011. The Cebu City Health Office (CCHO) has monitored fever incidence as a surrogate for dengue fever since the 1980s. Tweets from Cebu City, and the NCR were collected prospectively thru Twitter’s public application program interface. The Cebu City fever ground truth data set was smoothed with a seven day moving average to facilitate comparison to the PIDSR and Twitter data. A vocabulary of words and phrases describing fever and dengue fever in the tweets collected were identified and used to mark relevant tweets. A subset of these ‘fever’ tweets that mentioned fever related to a medical situation were identified. The incidence and the temporal pattern of these medically-relevant tweets were compared with the incidence and pattern of fever and dengue fever in the two ground truth data sets. Pearson correlation coefficient was used to compare the correlation among the different data sets. Noted lag periods were adjusted by moving the data in time and re-computing the correlation coefficient. RESULTS: 26,023,103 tweets were collected from the two geographic regions: 10,303,366 from Cebu City and 15,719,767 tweets from the NCR. 8,814 (0.02%) Tweets contained the word fever and 4099 (0.01% of total) mentioned fever in a medically-relevant context, for example. “…I have a fever…” vs. “…football fever….” The medically-relevant tweets were compared with both ground truth data sets. The correlation between the Tweets and each of the incidence data sets is shown below. CONCLUSIONS: Tweets containing medically-relevant fever references were correlated (p<0.0001) with both fever and dengue fever incidence in the ground truth data sets. The signal indicating fever in the medically-related tweets led the incidence data significantly: by 6 days for the Cebu City fever incidence; and by 12 days for the PIDSR dengue fever incidence. Temporal adjustment to account for observed lag periods increased the correlation coefficient by about one-third in both cases. This was a limited pilot study, but it suggests that Twitter extracts may provide a valid and timely surrogate data source to monitor dengue fever in this population. Further study of the correlation of Twitter and dengue in other areas, and of Twitter with other illnesses is warranted

    Tweeting Fever: Are Tweet Extracts a Valid Surrogate Data Source for Dengue Fever?

    Get PDF
    This abstract describes a study that examined whether Twitter data extracts could be used effectively as a surrogate data source for dengue fever for electronic disease surveillance. Tweets containing a medically-relevant reference to fever were compared to fever and dengue fever incidence data as identified by local and national health authorities and found to be statistically significantly correlated with both incidence data sets. The results suggest that Twitter extracts may provide a valid and timely surrogate data source to monitor dengue fever. Further study is warranted
    corecore