34 research outputs found

    Predicting the Response to Combination Antiretroviral Therapy: Retrospective Validation of geno2pheno-THEO on a Large Clinical Database

    Get PDF
    BackgroundExpert-based genotypic interpretation systems are standard methods for guiding treatment selection for patients infected with human immunodeficiency virus type 1. We previously introduced the software pipeline geno2pheno-THEO (g2p-THEO), which on the basis of viral sequence predicts the response to treatment with a combination of antiretroviral compounds by applying methods from statistical learning and the estimated potential of the virus to escape from drug pressure MethodsWe retrospectively validated the statistical model used by g2p-THEO in ∼7600 independent treatment-sequence pairs extracted from the EuResist integrated database, ranging from 1990 to 2007. Results were compared with the 3 most widely used expert-based interpretation systems: Stanford HIVdb, ANRS, and Rega ResultsThe difference in receiver operating characteristic curves between g2p-THEO and expert-based approaches was significant (P<.001; paired Wilcoxon test). Indeed, at 80% specificity, g2p-THEO found 16.2%-19.8% more successful regimens than did the expert-based approaches. The increased performance of g2p-THEO was confirmed in a 2001-2007 data set from which most obsolete therapies had been removed ConclusionFinding drug combinations that increase the chances of therapeutic success is the main reason for using decision support systems. The present analysis of a large data set derived from clinical practice demonstrates that g2p-THEO solves this task significantly better than state-of-the-art expert-based systems. The tool is available at http://www.geno2pheno.or

    Comparison of Classifier Fusion Methods for Predicting Response to Anti HIV-1 Therapy

    Get PDF
    BACKGROUND: Analysis of the viral genome for drug resistance mutations is state-of-the-art for guiding treatment selection for human immunodeficiency virus type 1 (HIV-1)-infected patients. These mutations alter the structure of viral target proteins and reduce or in the worst case completely inhibit the effect of antiretroviral compounds while maintaining the ability for effective replication. Modern anti-HIV-1 regimens comprise multiple drugs in order to prevent or at least delay the development of resistance mutations. However, commonly used HIV-1 genotype interpretation systems provide only classifications for single drugs. The EuResist initiative has collected data from about 18,500 patients to train three classifiers for predicting response to combination antiretroviral therapy, given the viral genotype and further information. In this work we compare different classifier fusion methods for combining the individual classifiers. PRINCIPAL FINDINGS: The individual classifiers yielded similar performance, and all the combination approaches considered performed equally well. The gain in performance due to combining methods did not reach statistical significance compared to the single best individual classifier on the complete training set. However, on smaller training set sizes (200 to 1,600 instances compared to 2,700) the combination significantly outperformed the individual classifiers (p<0.01; paired one-sided Wilcoxon test). Together with a consistent reduction of the standard deviation compared to the individual prediction engines this shows a more robust behavior of the combined system. Moreover, using the combined system we were able to identify a class of therapy courses that led to a consistent underestimation (about 0.05 AUC) of the system performance. Discovery of these therapy courses is a further hint for the robustness of the combined system. CONCLUSION: The combined EuResist prediction engine is freely available at http://engine.euresist.org

    Time on drug analysis based on real life data

    No full text
    The health condition of HIV-1 infected patients has improved during the last years, but lifelong antiretroviral treatment is still needed. However resistance, multiple side effects and drug to drug interactions of antiretrovirals challenge the establishment of a long lasting regimen. The average running time of each antiretroviral drug composing the therapy episodes combination antiretroviral therapy (cART) may be seen as an indicator of effectiveness and tolerability

    Predicting response to antiretroviral treatment by machine learning: The euresist project

    Get PDF
    For a long time, the clinical management of antiretroviral drug resistance was based on sequence analysis of the HIV genome followed by estimating drug susceptibility from the mutational pattern that was detected. The large number of anti-HIV drugs and HIV drug resistance mutations has prompted the development of computer-aided genotype interpretation systems, typically comprising rules handcrafted by experts via careful examination of in vitro and in vivo resistance data. More recently, machine learning approaches have been applied to establish data-driven engines able to indicate the most effective treatments for any patient and virus combination. Systems of this kind, currently including the Resistance Response Database Initiative and the EuResist engine, must learn from the large data sets of patient histories and can provide an objective and accurate estimate of the virological response to different antiretroviral regimens. The EuResist engine was developed by a European consortium of HIV and bioinformatics experts and compares favorably with the most commonly used genotype interpretation systems and HIV drug resistance experts. Next-generation treatment response prediction engines may valuably assist the HIV specialist in the challenging task of establishing effective regimens for patients harboring drug-resistant virus strains. The extensive collection and accurate processing of increasingly large patient data sets are eagerly awaited to further train and translate these systems from prototype engines into real-life treatment decision support tools

    Arevir: A Secure Platform for Designing Personalized Antiretroviral Therapies Against HIV

    No full text
    Despite the availability of antiretroviral combination therapies, success in drug treatment of HIV-infected patients is limited. One reason for therapy failure is the development of drug-resistant genetic variants. In principle, the viral genomic sequence provides resistance information and could thus guide the selection of an optimal drug combination. In practice however, the benefit of this procedure is impaired by (1) the difficulty in inferring the clinically relevant information from the genotype of the virus and (2) the restricted availability of this information. We have developed a secure platform for collaborative research aimed at optimizing anti-HIV therapies, called Arevir. A relational database schema was designed and implemented together with a webbased user interface. Our system provides a basis for monitoring patients, decision- support, and computational analyses. Thus, it merges clinical, diagnostic and bioinformatics efforts to exploit genomic and patient therapy data in clinical practice

    Factors influencing the efficacy of rilpivirine in HIV-1 subtype C in low- and middle-income countries

    No full text
    Objectives: The use of the NNRTI rilpivirine in low- and middle-income countries (LMICs) is under debate. The main objective of this study was to provide further clinical insights and biochemical evidence on the usefulness of rilpivirine in LMICs. Patients and methods: Rilpivirine resistance was assessed in 5340 therapy-naive and 13 750 first-generation NNRTI-failed patients from Europe and therapy-naive HIV-1 subtype C (HIV-1C)-infected individuals from India (n = 617) and Ethiopia (n = 127). Rilpivirine inhibition and binding affinity assays were performed using patient-derived HIV-1C reverse transcriptases (RTs). Results: Primary rilpivirine resistance was rare, but the proportion of patients with >100 000 HIV-1 RNA copies/mL pre-ART was high in patients from India and Ethiopia, limiting the usefulness of rilpivirine as a first-line drug in LMICs. In patients failing first-line NNRTI treatments, cross-resistance patterns suggested that 73% of the patients could benefit from switching to rilpivirine-based therapy. In vitro inhibition assays showed ~2-fold higher rilpivirine IC50 for HIV-1C RT than HIV-1B RT. Pre-steady-state determination of rilpivirine-binding affinities revealed 3.7-fold lower rilpivirine binding to HIV-1C than HIV-1B RT. Structural analysis indicated that naturally occurring polymorphisms close to the NNRTI-binding pocket may reduce rilpivirine binding, leading to lower susceptibility of HIV-1C to rilpivirine. Conclusions: Our clinical and biochemical findings indicate that the usefulness of rilpivirine has limitations in HIV-1C-dominated epidemics in LMICs, but the drug could still be beneficial in patients failing first-line therapy if genotypic resistance testing is performed

    Selecting anti-HIV therapies based on a variety of genomic and clinical factors

    Get PDF
    Motivation: Optimizing HIV therapies is crucial since the virus rapidly develops mutations to evade drug pressure. Recent studies have shown that genotypic information might not be sufficient for the design of therapies and that other clinical and demographical factors may play a role in therapy failure. This study is designed to assess the improvement in prediction achieved when such information is taken into account. We use these factors to generate a prediction engine using a variety of machine learning methods and to determine which clinical conditions are most misleading in terms of predicting the outcome of a therapy. Results: Three different machine learning techniques were used: generative–discriminative method, regression with derived evolutionary features, and regression with a mixture of effects. All three methods had similar performances with an area under the receiver operating characteristic curve (AUC) of 0.77. A set of three similar engines limited to genotypic information only achieved an AUC of 0.75. A straightforward combination of the three engines consistently improves the prediction, with significantly better prediction when the full set of features is employed. The combined engine improves on predictions obtained from an online state-of-the-art resistance interpretation system. Moreover, engines tend to disagree more on the outcome of failure therapies than regarding successful ones. Careful analysis of the differences between the engines revealed those mutations and drugs most closely associated with uncertainty of the therapy outcome. Availability: The combined prediction engine will be available from July 2008, see http://engine.euresist.org Contact: [email protected]

    Clinical use, efficacy, and durability of maraviroc for antiretroviral therapy in routine care: A European survey

    Get PDF
    OBJECTIVES:The study aimed to survey maraviroc use and assess effectiveness and durability of maraviroc-containing antiretroviral treatment (ART) in routine practice across Europe. METHODS:Data were retrieved from 26 cohorts in 8 countries comprising adults who started maraviroc in 2005-2016 and had ≥1 follow-up visit. Available V3 sequences were re-analysed centrally for tropism determination by geno2pheno[coreceptor]. Treatment failure (TF) was defined as either virological failure (viral load >50 copies/mL) or maraviroc discontinuation for any reason over 48 weeks. Predictors of TF were explored by logistic regression analysis. Time to maraviroc discontinuation was estimated by Kaplan-Meier survival analysis. RESULTS:At maraviroc initiation (baseline), among 1,381 patients, 67.1% had experienced ≥3 ART classes and 45.6% had a viral load 50 copies/mL in 19.9% and >200 copies/mL in 10.7%. Independent predictors of TF comprised a low nadir CD4 count, a detectable baseline viral load, previous PI experience, non-R5 tropism, having ≥3 active drugs in the accompanying regimen, and a more recent calendar year of maraviroc initiation. CONCLUSIONS:This study reports on the largest observation cohort of patients who started maraviroc across 8 European countries. In this overall highly treatment-experienced population, with a small but appreciable subset that received maraviroc outside of standard treatment guidelines, maraviroc was safe and reasonably effective, with relatively low rates of discontinuation over 48 weeks and only 2 cases of serum transaminase elevations reported as reasons for discontinuation

    Investigation of expert rule bases, logistic regression, and non-linear machine learning techniques for predicting response to antiretroviral treatment

    No full text
    BACKGROUND: The extreme flexibility of the HIV type-1 (HIV-1) genome makes it challenging to build the ideal antiretroviral treatment regimen. Interpretation of HIV-1 genotypic drug resistance is evolving from rule-based systems guided by expert opinion to data-driven engines developed through machine learning methods. METHODS: The aim of the study was to investigate linear and non-linear statistical learning models for classifying short-term virological outcome of antiretroviral treatment. To optimize the model, different feature selection methods were considered. Robust extra-sample error estimation and different loss functions were used to assess model performance. The results were compared with widely used rule-based genotypic interpretation systems (Stanford HIVdb, Rega and ANRS). RESULTS: A set of 3,143 treatment change episodes were extracted from the EuResist database. The dataset included patient demographics, treatment history and viral genotypes. A logistic regression model using high order interaction variables performed better than rule-based genotypic interpretation systems (accuracy 75.63% versus 71.74-73.89%, area under the receiver operating characteristic curve [AUC] 0.76 versus 0.68-0.70) and was equivalent to a random forest model (accuracy 76.16%, AUC 0.77). However, when rule-based genotypic interpretation systems were coupled with additional patient attributes, and the combination was provided as input to the logistic regression model, the performance increased significantly, becoming comparable to the fully data-driven methods. CONCLUSIONS: Patient-derived supplementary features significantly improved the accuracy of the prediction of response to treatment, both with rule-based and data-driven interpretation systems. Fully data-driven models derived from large-scale data sources show promise as antiretroviral treatment decision support tools.status: publishe
    corecore