10 research outputs found

    The IGF2 methylation score for adrenocortical cancer:an ENSAT validation study

    Get PDF
    Adrenocortical carcinoma (ACC) is diagnosed using the histopathological Weiss score (WS), but remains clinically elusive unless it has metastasized or grows locally invasive. Previously, we proposed the objective IGF2 methylation score as diagnostic tool for ACC. This multicenter European cohort study validates these findings. Patient and tumor characteristics were obtained from adrenocortical tumor patients. DNA was isolated from frozen specimens, where after DMR2, CTCF3, and H19 were py rosequenced. The predictive value of the methylation score for malignancy, defined by the WS or metastasis development, was assessed using receiver operating characteristic curves and logistic and Cox regression analyses. Seventy-six ACC patients and 118 patients with adrenocortical adenomas were included from seven centers. The methylation score and tumor size were independently associated with the pathological ACC diagnosis (OR 3.756 95% CI 2.224-6.343; OR 1.467 95% CI 1.202-1.792, respectively; Hosmer-Lemeshow test P = 0.903), with an area under the curve (AUC) of 0.957 (95% CI 0. 930-0.984). The methylation score alone resulted in an AUC of 0.910 (95% CI 0.8 66-0.952). Cox regression analysis revealed that the methylation score, WS and tumor size predicted development of metastases in univariate analysis. In multivariate analysis, only the WS predicted development of metastasis (OR 1.682 95% CI 1.285-2.202; P <0.001). In conclusion, we validated the high diagnostic accuracy of the IGF2 methylation score for diagnosing ACC in a multicenter European cohort study. Considering the known limitations of the WS, the objective IGF2 methylation score could potentially provide extra guidance on decisions on postoperative strategies in adrenocortical tumor patients

    Development and Internal Validation of a Multivariable Prediction Model for Adrenocortical-Carcinoma-Specific Mortality

    Get PDF
    Adrenocortical carcinoma (ACC) has an incidence of about 1.0 per million per year. In general, survival of patients with ACC is limited. Predicting survival outcome at time of diagnosis is a clinical challenge. The aim of this study was to develop and internally validate a clinical prediction model for ACC-specific mortality. Data for this retrospective cohort study were obtained from the nine centers of the Dutch Adrenal Network (DAN). Patients who presented with ACC between 1 January 2004 and 31 October 2013 were included. We used multivariable Cox proportional hazards regression to compute the coefficients for the prediction model. Backward stepwise elimination was performed to derive a more parsimonious model. The performance of the initial prediction model was quantified by measures of model fit, discriminative ability, and calibration. We undertook an internal validation step to counteract the possible overfitting of our model. A total of 160 patients were included in the cohort. The median survival time was 35 months, and interquartile range (IQR) 50.7 months. The multivariable modeling yielded a prediction model that included age, modified European Network for the Study of Adrenal Tumors (mENSAT) stage, and radical resection. The c-statistic was 0.77 (95% Confidence Interval: 0.72, 0.81), indicating good predictive performance. We developed a clinical prediction model for ACC-specific mortality. ACC mortality can be estimated using a relatively simple clinical prediction model with good discriminative ability and calibration

    Adjuvant mitotane versus surveillance in low-grade, localised adrenocortical carcinoma (ADIUVO): an international, multicentre, open-label, randomised, phase 3 trial and observational study

    Get PDF
    BACKGROUND: Adjuvant treatment with mitotane is commonly used after resection of adrenocortical carcinoma; however, treatment remains controversial, particularly if risk of recurrence is not high. We aimed to assess the efficacy and safety of adjuvant mitotane compared with surveillance alone following complete tumour resection in patients with adrenocortical carcinoma considered to be at low to intermediate risk of recurrence. METHODS: ADIUVO was a multicentre, open-label, parallel, randomised, phase 3 trial done in 23 centres across seven countries. Patients aged 18 years or older with adrenocortical carcinoma and low to intermediate risk of recurrence (R0, stage I-III, and Ki67 ≤10%) were randomly assigned to adjuvant oral mitotane two or three times daily (the dose was adjusted by the local investigator with the target of reaching and maintaining plasma mitotane concentrations of 14-20 mg/L) for 2 years or surveillance alone. All consecutive patients at 14 study centres fulfilling the eligibility criteria of the ADIUVO trial who refused randomisation and agreed on data collection via the European Network for the Study of Adrenal Tumors adrenocortical carcinoma registry were included prospectively in the ADIUVO Observational study. The primary endpoint was recurrence-free survival, defined as the time from randomisation to the first radiological evidence of recurrence or death from any cause (whichever occurred first), assessed in all randomly assigned patients by intention to treat. Overall survival, defined as time from the date of randomisation to the date of death from any cause, was a secondary endpoint analysed by intention to treat in all randomly assigned patients. Safety was assessed in all patients who adhered to the assigned regimen, which was defined by taking at least one tablet of mitotane in the mitotane group and no mitotane at all in the surveillance group. The ADIUVO trial is registered with ClinicalTrials.gov, NCT00777244, and is now complete. FINDINGS: Between Oct 23, 2008, and Dec 27, 2018, 45 patients were randomly assigned to mitotane and 46 to surveillance alone. Because the study was discontinued prematurely, 5-year recurrence-free and overall survival are reported instead of recurrence-free and overall survival as defined in the protocol. 5-year recurrence-free survival was 79% (95% CI 67-94) in the mitotane group and 75% (63-90) in the surveillance group (hazard ratio 0·74 [95% CI 0·30-1·85]). Two people in the mitotane group and five people in the surveillance group died, and 5-year overall survival was not significantly different (95% [95% CI 89-100] in the mitotane group and 86% [74-100] in the surveillance group). All 42 patients who received mitotane had adverse events, and eight (19%) discontinued treatment. There were no grade 4 adverse events or treatment-related deaths. INTERPRETATION: Adjuvant mitotane might not be indicated in patients with low-grade, localised adrenocortical carcinoma considering the relatively good prognosis of these patients, and no significant improvement in recurrence-free survival and treatment-associated toxicity in the mitotane group. However, the study was discontinued prematurely due to slow recruitment and cannot rule out an efficacy of treatment. FUNDING: AIFA, ENSAT Cancer Health F2-2010-259735 programme, Deutsche Forschungsgemeinschaft, Cancer Research UK, and the French Ministry of Health

    Urine steroid metabolomics for the differential diagnosis of adrenal incidentalomas in the EURINE-ACT study: a prospective test validation study

    Get PDF

    EDP-mitotane in children:reassuring evidence of reversible side-effects and neurotoxicity

    No full text
    Adrenocortical carcinoma affects one in 5 million children each year. Since prognosis for children older than 4 years is limited, clinicians often choose aggressive treatment with etoposide, doxorubicin, cisplatin (EDP) and mitotane after resection. However, little is known about the impact of EDP-mitotane in children. We provide an overview of case-reports and case series listing side-effects and neurotoxicity of EDP-mitotane in children. Fourteen studies were identified describing a range of gastro-intestinal, endocrine, developmental and neuropsychological side-effects. Neurotoxicity included motor- and speech delay, decreased concentration and lower school performance. These side-effects appear to be reversible after mitotane discontinuation. We have added our own experience with a 10 year old girl with advanced adrenocortical carcinoma treated with EDP and 2 years of mitotane after irradical resection. She developed an impactful, but reversible, decrease in cognitive development measured by a standardized neuropsychological assessment before, during and after mitotane therapy. This decrease was mostly measurable in terms of decreased processing speed and concentration and a significant drop in school performance. Combined with fatigue and insecurity, this caused problems in short-term memory and the need to change her school type. In conclusion, EDP-mitotane is associated with several side-effects including neurotoxicity in pediatric cases, all reversible after mitotane discontinuation

    The Role of the IGF2 Methylation Score in Diagnosing Adrenocortical Tumors with Unclear Malignant Potential-Feasibility of Formalin-Fixed Paraffin-Embedded Tissue

    Get PDF
    The differentiation between benign and malignant adrenocortical tumors based on pathological assessment can be difficult. We present a series of 17 patients with unclear malignant tumors, of whom six had recurrent or metastatic disease. The assessment of the methylation pattern of insulin-like growth factor 2 (IGF2) regulatory regions in fresh frozen material has shown to be valuable in determining the malignancy of adrenocortical tumors, although this has not been elaborately tested in unclear malignant tumors. Since fresh frozen tissue was only available in six of the patients, we determined the feasibility of using formalin-fixed paraffin-embedded (FFPE) tissue for this method. We isolated DNA from FFPE tissue and matched the fresh frozen tissue of three patients with adrenocortical carcinoma. Methylation patterns of IGF2 regulatory regions were determined by pyrosequencing using different amounts of bisulfite-converted DNA (5 ng, 20 ng, 40 ng). Compared to fresh frozen tissue, FFPE tissue had a higher failure rate (fresh frozen 0%; FFPE 18.5%) and poor-to-moderate replicability (fresh frozen rho = 0.89–0.99, median variation 1.6%; FFPE rho = −0.09–0.85, median variation 7.7%). There was only a poor-to-moderate correlation between results from fresh frozen and FFPE tissue (rho = −0.28–0.70, median variation 13.2%). In conclusion, FFPE tissue is not suitable for determining the IGF2 methylation score in patients with an unclear malignant adrenocortical tumor using the currently used method. We, therefore, recommend fresh frozen storage of resection material for diagnostic and biobank purposes.</p

    Development and Internal Validation of a Multivariable Prediction Model for Adrenocortical-Carcinoma-Specific Mortality

    No full text
    Simple Summary Adrenocortical carcinoma is a rare and aggressive cancer. Great variability in clinical course is observed, ranging from patients with extreme long survival to aggressive tumors with prompt fatal outcome. This heterogeneity in survival makes it complicated to tailor treatment strategies for an individual patient. Therefore we sought to identify prognostic factors associated with ACC specific mortality. We analyzed the data of 160 ACC patients and developed a clinical prediction model including age, modified European Network for the Study of Adrenal Tumors (mENSAT) stage, and radical resection. This easy-to-use prediction model for ACC-specific mortality has the potential to guide clinical decision making if externally validated. Adrenocortical carcinoma (ACC) has an incidence of about 1.0 per million per year. In general, survival of patients with ACC is limited. Predicting survival outcome at time of diagnosis is a clinical challenge. The aim of this study was to develop and internally validate a clinical prediction model for ACC-specific mortality. Data for this retrospective cohort study were obtained from the nine centers of the Dutch Adrenal Network (DAN). Patients who presented with ACC between 1 January 2004 and 31 October 2013 were included. We used multivariable Cox proportional hazards regression to compute the coefficients for the prediction model. Backward stepwise elimination was performed to derive a more parsimonious model. The performance of the initial prediction model was quantified by measures of model fit, discriminative ability, and calibration. We undertook an internal validation step to counteract the possible overfitting of our model. A total of 160 patients were included in the cohort. The median survival time was 35 months, and interquartile range (IQR) 50.7 months. The multivariable modeling yielded a prediction model that included age, modified European Network for the Study of Adrenal Tumors (mENSAT) stage, and radical resection. The c-statistic was 0.77 (95% Confidence Interval: 0.72, 0.81), indicating good predictive performance. We developed a clinical prediction model for ACC-specific mortality. ACC mortality can be estimated using a relatively simple clinical prediction model with good discriminative ability and calibration

    Population Pharmacokinetic and Pharmacogenetic Analysis of Mitotane in Patients with Adrenocortical Carcinoma:Towards Individualized Dosing

    Get PDF
    BACKGROUND: Mitotane is the only approved treatment for patients with adrenocortical carcinoma (ACC). A better explanation for the variability in the pharmacokinetics (PK) of mitotane, and the optimization and individualization of mitotane treatment, is desirable for patients. OBJECTIVES: This study aims to develop a population PK (PopPK) model to characterize and predict the PK profiles of mitotane in patients with ACC, as well as to explore the effect of genetic variation on mitotane clearance. Ultimately, we aimed to facilitate mitotane dose optimization and individualization for patients with ACC. METHODS: Mitotane concentration and dosing data were collected retrospectively from the medical records of patients with ACC taking mitotane orally and participating in the Dutch Adrenal Network. PopPK modelling analysis was performed using NONMEM (version 7.4.1). Genotypes of drug enzymes and transporters, patient demographic information, and clinical characteristics were investigated as covariates. Subsequently, simulations were performed for optimizing treatment regimens. RESULTS: A two-compartment model with first-order absorption and elimination best described the PK data of mitotane collected from 48 patients. Lean body weight (LBW) and genotypes of CYP2C19*2 (rs4244285), SLCO1B3 699A>G (rs7311358) and SLCO1B1 571T>C (rs4149057) were found to significantly affect mitotane clearance (CL/F), which decreased the coefficient of variation (CV%) of the random inter-individual variability of CL/F from 67.0 to 43.0%. Fat amount (i.e. body weight - LBW) was found to significantly affect the central distribution volume. Simulation results indicated that determining the starting dose using the developed model is beneficial in terms of shortening the period to reach the therapeutic target and limit the risk of toxicity. A regimen that can effectively maintain mitotane concentration within 14-20 mg/L was established. CONCLUSIONS: A two-compartment PopPK model well-characterized mitotane PK profiles in patients with ACC. The CYP2C19 enzyme and SLCO1B1 and SLCO1B3 transporters may play roles in mitotane disposition. The developed model is beneficial in terms of optimizing mitotane treatment schedules and individualizing the initial dose for patients with ACC. Further validation of these findings is still required
    corecore