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Simple Summary: Adrenocortical carcinoma is a rare and aggressive cancer. Great variability in
clinical course is observed, ranging from patients with extreme long survival to aggressive tumors
with prompt fatal outcome. This heterogeneity in survival makes it complicated to tailor treatment
strategies for an individual patient. Therefore we sought to identify prognostic factors associated with
ACC specific mortality. We analyzed the data of 160 ACC patients and developed a clinical prediction
model including age, modified European Network for the Study of Adrenal Tumors (mENSAT) stage,
and radical resection. This easy-to-use prediction model for ACC-specific mortality has the potential
to guide clinical decision making if externally validated.
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Abstract: Adrenocortical carcinoma (ACC) has an incidence of about 1.0 per million per year.
In general, survival of patients with ACC is limited. Predicting survival outcome at time of diagnosis
is a clinical challenge. The aim of this study was to develop and internally validate a clinical prediction
model for ACC-specific mortality. Data for this retrospective cohort study were obtained from the
nine centers of the Dutch Adrenal Network (DAN). Patients who presented with ACC between
1 January 2004 and 31 October 2013 were included. We used multivariable Cox proportional hazards
regression to compute the coefficients for the prediction model. Backward stepwise elimination was
performed to derive a more parsimonious model. The performance of the initial prediction model
was quantified by measures of model fit, discriminative ability, and calibration. We undertook an
internal validation step to counteract the possible overfitting of our model. A total of 160 patients
were included in the cohort. The median survival time was 35 months, and interquartile range
(IQR) 50.7 months. The multivariable modeling yielded a prediction model that included age,
modified European Network for the Study of Adrenal Tumors (mENSAT) stage, and radical resection.
The c-statistic was 0.77 (95% Confidence Interval: 0.72, 0.81), indicating good predictive performance.
We developed a clinical prediction model for ACC-specific mortality. ACC mortality can be estimated
using a relatively simple clinical prediction model with good discriminative ability and calibration.

Keywords: adrenocortical carcinoma; prediction; mortality

1. Introduction

Adrenocortical carcinoma (ACC) is a rare malignancy with an annual incidence of about 1.0
per million individuals [1]. With an overall one-year survival rate of 60% and a five-year survival
rate of 32% [1], the disease has a poor prognosis in general. Nonetheless, patients who survive for
12–28 years have been documented [2]. The exact reason for the long survival in these patients is
unknown. Several factors may be responsible for these differences in survival, e.g., tumor type, lifestyle,
and genetic variability. Predicting survival outcome at the time of diagnosis is difficult in clinical
practice. Some clinical variables show prognostic potential: the Weiss score is the internationally
acknowledged pathologic scoring system to differentiate between malignant and benign tumors.
The Weiss score is a nine-point scoring system, in which a score of three or higher corresponds to a
high probability of malignancy [3,4]. A Weiss score greater than six has been found to correspond to
poor prognosis [5].

Another histological weighted scoring system is the Van Slooten Index (VSI). A score of eight or
higher corresponds to a high probability of malignancy [6]. Unfortunately, neither of these pathological
features are sufficiently specific for an estimation of prognosis in ACC.

The Ki67 index, an immunohistochemical marker, has been suggested as an additional prognostic
parameter. The Ki67 index is an estimate of the percentage of tumor proliferation. A Ki67 index over
5% is suggestive of malignancy [7]. A malignant tumor with a Ki67 index under 10% is associated with
a relatively good prognosis; an index over 20% is associated with an undesirable course of disease [5,8].
However, the Ki67 scoring assessment varies greatly, and both inter- and intra-observer variations
cause significant limitations to its clinical utility [9]. Additionally, the clinically relevant cutoff values
that are suggested to be associated with prognosis are debatable.

Other molecular or genomic prognostic markers that can clearly distinguish between low-risk and
high-risk ACC tumors are being increasingly investigated [10], but their clinical value as prognostic
tools has not yet been determined in large prospective series and therefore they are not part of the
current clinical guidelines [11].

In 2004, the International Union Against Cancer (UICC) and the World Health Organization
published the first staging classification based on the Tumor, Node, Metastasis (TNM) criteria for
ACC [12]. Due to shortcomings, the European Network for the Study of Adrenal Tumors (ENSAT)
developed a revised staging system [13]. The ENSAT staging system is currently recommended for
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estimating the prognosis of a patient with ACC [5,12]. However, the ENSAT stage is still associated
with considerable heterogeneity, as reflected by a five-year stage-dependent survival of 66–82% for
stage I, 58–64% for stage II, 24–50% for stage III, and 0–17% for stage IV [14]. A prediction model
combining multiple parameters that have been individually associated with survival could be of
significant additional value, and may be more useful in clinical practice. A clinical prediction model
can inform patients and their physicians of the patients’ probability of a specified outcome and
help them with associated decision making. Previous prediction models were developed for specific
subgroups of ACC patients: recurrence-free (RFS) and overall survival (OS) after curative resection
of ACC [15], OS of ACC patients after surgery [16], or lacking essential (histologic) predictors in the
model development [17–19]. Therefore, the aim of this study is to develop and internally validate a
multivariable, generally applicable clinical prediction model for ACC-specific mortality.

2. Results

A total of 160 patients were included in the cohort. One patient was omitted from the analysis,
as no outcome measures were available. Patients were followed for a median period of 33 months
(1st and 3rd quartile: 11.0–61.5). A total of 108 (67.9%) patients died during the course of follow-up.
The median survival time was 35.6 months (range 0.7–145.4 months). The characteristics of all patients
included in this study are shown in Table 1. Figure 1 shows the Kaplan–Meier curve of the total cohort,
for a total follow-up time of 60 months.

Table 1. Patient characteristics (N = 160) *.

Original Data Imputed Data

N (% of total) (Range) N (% of total) (Range)
Male 61 (38) 61 (38)

Female 99 (62) 99 (62)
Age at diagnosis 55 (19–89) 55 (19–89)

ENSAT Stage
I 9 (6) 9 (6)
II 58 (36) 58 (36)
III 42 (26) 42 (26)
IV 51 (32) 51 (32)

mENSAT Stage
I 9 (6) 9 (6)
II 58 (36) 58 (36)
III 30 (19) 30 (19)
IVa 36 (22) 36 (22)
IVb 17 (11) 17 (11)
IVc 10 (6) 10 (6)

Resection status
R0 74 (46,25) 74 (46)

R1/R2/Rx 61 (38,1) 68 (43)
No surgery 18 (11,25) 18 (11)

Missing 7 (4,4) -

Ki67
≤5 27 (17) 47 (29)

6–10 19 (12) 28 (18)
11–15 8 (5) 16 (10)
>15 30 (18,5) 69 (43)

Missing 76 (47,5) -

Capsular and/or vascular invasion
Yes 90 (56) 125 (78)
No 24 (15) 35 (22)

Missing 46 (29) -
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Table 1. Cont.

Original Data Imputed Data

Hypercortisolism
Yes 88 (55) 88 (55)
No 35 (22) 72 (45)

Missing 37 (23) -

Complaints due to tumor mass
Yes 78 78
No 13 82

Missing 69 -

* To prevent a loss of statistical precision and to decrease the likelihood of obtaining biased results, we imputed the
available data (see methods for further explanation). See Section 4 for definition of the predictor variables.
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Figure 1. Kaplan–Meier curve, including 95% confidence band of the risk of adrenocortical carcinoma-related
mortality. The numbers above the x-axis denote the number of patients still at risk at each point in time.

In the original database, before attempted revision, 48 (30%) out of 160 patients had a Ki67 score.
Fifty-five of 160 (34%) tumor samples were retrieved for central revision of the Ki67. Of only 49 samples,
the appropriate material was available for immunohistochemistry analysis and of these 49 samples
13 tumors already had a Ki67 record in the database (net: 49 − 13 = 36 new Ki67 data). Revision data
were used for final analysis. The number of valid records increased from 48 (30%) in the original
database to (48 + 36) 84 (52.5%) in the new database.

The correlation between ENSAT and mENSAT was high (rho = 0.93, p < 0.001). We selected
mENSAT for further statistical modelling based on a stronger univariable association with survival.
The c-statistic for mENSAT was 0.73, compared to 0.71 for ENSAT. The restricted cubic spline regression
revealed no significant non-linear associations between continuous predictor variables and mortality.
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Because of the high proportion of missing values on the Ki67, the modelling procedure was performed
both with and without Ki67.

Table 2 shows the coefficients of the predictor variables that were significantly associated with
ACC-related mortality. In the model that was derived without the Ki67 index, cortisol and pathology
positivity were also excluded during the backward elimination process because their p-values were
too high (p = 0.469 and p = 0.155 upon exclusion, respectively). All predictors were risk factors for
ACC-specific mortality, except for radical resection, which was protective. The scaled Schoenfeld
residuals revealed that no predictor variables violated the proportional hazards assumption, indicating
that the predictor variables are valid for the whole follow-up period.

Table 2. Initial and internally validated coefficients of the prediction model for ACC-specific mortality.

Predictor
Model with Ki67 Model without Ki67

Coefficient HR (95% CI) Shrunk Coefficient * Coefficient HR (95% CI) Shrunk Coefficient *

Age at diagnosis (year) 0.02 1.02 (1.01, 1.03) 0.02 0.02 1.02 (1.00, 1.03) 0.02
Pathology positive (yes) 0.52 1.68 (0.98, 2.89) 0.47

mENSAT (stage) 0.61 1.84 (1.55, 2.18) 0.65 0.66 1.93 (1.64, 2.28) 0.63
Ki67 (%) 0.01 1.01 (1.00, 1.03) 0.01

Radical resection of
tumor (yes) −0.37 0.69 (0.46, 1.04) −0.34 −0.46 0.63 (0.42, 0.94) −0.44

* Internally validated (shrunk) coefficients were obtained by multiplying the coefficients by the shrinkage factor of
0.91 for the model with Ki67, and 0.95 for the model without Ki67.

Pathology was scored positive if venous invasion or capsular invasion were present according to
the Weiss criteria in the pathology report or capsular and/or vascular invasion was scored yes according
to the Van Slooten Index in the pathology report (see Section 4).

The c-index, which was computed to quantify the ability of the model to separate events of
ACC-specific mortality from patients who did not experience the event, was 0.77 (95% CI: 0.73, 0.81)
and 0.77 (95% CI: 0.72, 0.81) for the models including and excluding Ki67 in the selection process,
respectively. Figure 2 shows the calibration plots of both models. The lines closely follow the ideal line
of 45 degrees, indicating that both models are well-calibrated.
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Figure 2. Months of follow-up time.

The internal validation yielded a shrinkage factor of 0.91 for the model with Ki67, and 0.95 for the
model without Ki67 (Table 2). Hence, slightly more overfitting was present in the model that included
Ki67. In addition, the internal validation yielded a measure of optimism of the c-index of only 0.01,
indicating that the c-index as a measure of the model’s ability to discriminate in future patients is
estimated to be 0.76 and 0.76 for the two models, respectively (compared to the apparent ability to
discriminate of 0.77 and 0.77, respectively). The shrinkage factors that are close to 1, together with the
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small measures of optimism, indicate that these models are not much overfitted. Figures 3 and 4 show
the Kaplan–Meier curves for patients stratified by their risk score, for both models.
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including Ki67.

Prediction for Future Patients

The prediction models presented in Table 2 can either be used to compute an individual risk score
to determine risk category (Figures 3 and 4), or to compute an actual probability that an individual
experiences ACC-specific mortality within one, two, or five years. How to do so is outlined below.

The risk score (RS) can be computed by multiplying the shrunk coefficients by the values of
an individual patient minus the sample average for age (54.5), mENSAT (3.2), and radical resection
(0.8). mENSAT takes on a score from 1–6, with mENSAT I-III scoring 1–3 points, and IVa-IVc scoring
4–6 points. The surgical resection is scored one if radical and zero if not (see Section 4), for example, using
the model without Ki67: 0.02 × (age − 54.5) + 0.63 × (mENSAT − 3.2) − 0.44 × (radical resection − 0.8) of
the tumor (no = 0, yes = 1). A 64-year old patient with an mENSAT stage of 4a, and no radical resection
of the tumor, would have a risk score of 0.02 × (64 − 54.5) + 0.63 × (4 − 3.2) − 0.44 × (0 − 0.8) = 1.046.
Figure 4 shows that this individual would be classified as being at high risk of ACC-specific mortality.

The probability of ACC-specific mortality within one, two, or five years is computed by combining
the Kaplan–Meier estimate at one, two, or five years and the sum of the shrunk coefficients to the
centered values of an individual patient (i.e., the value minus the sample average) as 1 − S(t)exp (LP):
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S(t) is the survival function in which t is time. S(t) for one, two, and five years is 0.73, 0.56,
and 0.37, respectively (see Kaplan–Meier Figure 1). Exp(LP) stands for e raised to the power of the
linear predictor (exp: exponential (function), e is the mathematical constant, lp: lineair predictor).
The linear predictor can be computed as 0.02 × (age − 54.5) + 0.63 × (mENSAT − 3.2) − 0.44 × (radical
resection of the tumor − 0.8). The 64-year old patient with an mENSAT stage of 4a, and no
radical resection (no = 0) of the tumor, would have a two-year probability of ACC-specific
mortality of 1 − 0.56exp(LP). LP = 0.02 × (64 − 54.5) + 0.63 × (4 − 3.2) − 0.44 × (0 − 0.8) = 1.046; hence,
the probability = 1− 0.56exp(1.046) = 0.81 = 81%. This can be confirmed in Figure 4, in which approximately
20% of the high-risk group survives past 24 months.

Cancers 2020, 12, x  7 of 16 

 
Figure 4. Kaplan–Meier stratified by risk groups based on each individual’s risk score (RS) of the 
model without Ki67. The Risk Score can be computed as 0.02 × (age − 54.5) + 0.63 × (mENSAT − 3.2) − 
0.44 × (radical resection of the tumor − 0.8). 

Prediction for Future Patients 

The prediction models presented in Table 2 can either be used to compute an individual risk 
score to determine risk category (Figures 3 and 4), or to compute an actual probability that an 
individual experiences ACC-specific mortality within one, two, or five years. How to do so is outlined 
below. 

The risk score (RS) can be computed by multiplying the shrunk coefficients by the values of an 
individual patient minus the sample average for age (54.5), mENSAT (3.2), and radical resection (0.8). 
mENSAT takes on a score from 1–6, with mENSAT I-III scoring 1–3 points, and IVa-IVc scoring 4–6 
points. The surgical resection is scored one if radical and zero if not (see method section), for example, 
using the model without Ki67: 0.02 × (age − 54.5) + 0.63 × (mENSAT − 3.2) − 0.44 × (radical resection − 
0.8) of the tumor (no = 0, yes = 1). A 64-year old patient with an mENSAT stage of 4a, and no radical 
resection of the tumor, would have a risk score of 0.02 × (64 − 54.5) + 0.63 × (4 − 3.2) − 0.44 × (0 − 0.8) = 
1.046. Figure 4 shows that this individual would be classified as being at high risk of ACC-specific 
mortality. 

Low risk 
Intermediate risk 
High risk 

Figure 4. Kaplan–Meier stratified by risk groups based on each individual’s risk score (RS) of the model
without Ki67. The Risk Score can be computed as 0.02 × (age − 54.5) + 0.63 × (mENSAT − 3.2) − 0.44 ×
(radical resection of the tumor − 0.8).

3. Discussion

In this collaborative study of the Dutch Adrenal Network, a model capable of predicting
ACC-specific mortality was developed. An accurate prediction model could help to identify patients
at greater risk of death, and support the decision making on early systemic therapy. Furthermore,
a prediction model could support selection of a specific subgroup eligible for new therapeutic compounds.

Ki67 is a suggested prognostic marker in ACC [5,20]; therefore, we performed modelling both with
and without Ki67. Both models were based on tumor stage defined by the mENSAT classification, age,
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and radical resection of the primary tumor. The model with Ki67 also relied on hormonal status and
the pathology criteria capsular and/or vascular invasion. Although both models showed comparable
discriminative ability and calibration, the model with Ki67 was partially based on imputed data
because of missing data despite our efforts to revise the Ki67 index for all patients. Previous research
has shown that pathology data are often incompletely described in ACC [21]. In addition, pathology
reports are not standardized in ACC. Prognostic scoring systems based on the Weiss and Van Slooten
criteria as well as the Ki-67 are to a certain extent subjective, as a reliable assessment largely depends on
the expertise of the pathologist [22]. Furthermore, there is often significant inter-observer variability in
the determination of the Ki67 [9]. Therefore, in order to improve the generalizability of our prediction
model, we decided to use more reliable and easily accessible clinical variables such as age, mENSAT,
and completeness of the resection.

This is the first time the mENSAT stage has been considered in a prediction model. Both ENSAT
stage, number of affected organs, presence of metastasis, as well as nodal status have shown to be
correlated with survival [5,13,23–25]. The mENSAT stage combines those variables in one staging
system, and considers the number of affected organs, including the primary tumor and lymph
nodes [5]. The important difference compared with the ENSAT staging system currently used is the
fact that T3-4N1M0 is considered stage IV instead of stage III. Lymph node positive disease has been
demonstrated to be associated with a less favorable prognosis [26,27], and consequently, given the
high recurrence rates for ENSAT stage III, a more prominent role for neo- and adjuvant therapy has
been put forward [27]. We endorse using the mENSAT stage in clinical practice.

Estimating survival with the Kaplan–Meier analysis, which is commonly done, has its limitations.
It is a nonparametric approach to survival outcomes, and it is able to show univariate relationships
graphically or to compute survival factions at a certain time of follow-up. However, the Kaplan–Meier
method and the log-rank test cannot be used for multivariate analysis. When looking at current data
based on Kaplan Meier data, a stage IV patient could have zero percent change of 5-year survival or
almost 20%. Most patients want to know if they have this small chance at 5-year survival or no chance
at all when deciding on starting chemotherapy or mitotane. A clinical prediction model provides such
tailored estimation on prognosis. In daily practice, a physician would like to estimate the prognosis
tailored for a particular patient, underscoring the need for a reliable clinical prediction model.

In contrast to previously proposed prediction models for ACC, we included pathological data,
imputed missing data to prevent a loss of statistical precision, and considered the most recently
proposed mENSAT staging system [5]. Another strength of the present study is that our modelling
was not based on a pre-selected group of patients with ACC, as our sample included all ENSAT stages.
Kim et al. [24] developed a prediction model based on a multi-institutional group of patients treated in
the United States who underwent surgery for ACC (Table 3). Notably, they excluded patients with
metastatic disease at presentation as well as patients with a macroscopically nonradical resection (R2).
Although they studied a relatively large cohort (n = 148), the external validity of their study is limited
because up to 53% of patients with ACC may present with metastatic disease [21]. Even if their model
was solely meant to predict RFS and OS after surgery, they still excluded patients. Surgery is being
considered in patients with metastatic disease, and it has been shown that surgery may even improve
the outcome in selected patients with stage IV disease, especially if an R0 resection can be achieved [28].

Li et al. presented a nomogram for overall survival (age, year of diagnosis); histologic grade
(I + II, III + IV, and unknown); historic stage (localized, regional, distant, and unknown); chemotherapy
(no/unknown or yes); and cancer-specific survival (CSS), including age, year of diagnosis, historic
stage and chemotherapy [17]. Kong et al. did not include any histological criteria, but their nomogram
included age and TNM stage (according to the 7th American Joint Committee on Cancer (AJCC) TNM
staging) [16]. With the nomogram of Li et al., future use causes a problem where year of diagnosis
can only be scored till 2015. In addition, their other predictors in that nomogram are not commonly
used in clinical practice [17]. The same limitation applies to the nomogram by Kong et al., who use the
AJCC TNM staging [16]. Age, however, is a predictor in both models.
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Table 3. Overview of current models for prognostication in patient with ACC.

Study N Outcome Predictors C Statistics

Model development Internal validation External validation

Zini et al., 2009 [19] 205 - 207

CSM and ACM in
patients managed with

either surgery or no
surgery for ACC.

CSM/ACM: age, stage (localized, regional,
and distant), and surgical status (surgery or

no surgery).
-

Kim et al., 2016 [24] 148
Bootstrap

validation with
200 resamplings.

- RFS and OS after
curative surgical
resection of ACC.

RFS: tumor size (<12 or ≥12 cm), nodal status (N0,
N1, or Nx), T stage (I/II or III/IV), cortisol-secreting

tumor, and capsular invasion.
RFS: 0.74

OS: tumor size (<12 or ≥12 cm), nodal status (N0,
N1, or Nx), and resection margin (R0 or R1). OS: 0.70

Li et al., 2018 [17] 751
Bootstrap

validation with
200 resamplings.

- OS and CSS in patients
with ACC.

OS: age at diagnosis, year of diagnosis (1973–1987,
1988–2001, 2002–2015), histologic grade (I + II, III +

IV, unknown), historic stage (localized, regional,
distant, unknown), and chemotherapy

(no/unknown, yes).

OS: 0.677

CSS: age at diagnosis, year of diagnosis (1973–1987,
1988–2001, 2002–2015), historic stage (localized,

regional, distant, and unknown),
and chemotherapy (no/unknown, yes).

CSS: 0.672

Kong et al., 2019 [16] 404
318, and bootstrap

validation with
1000 resamplings.

82 + 82 * = 164 OS in patients with
ACC after surgery.

OS: age, T stage (T1-T4), N stage (N0, N1), M stage
(M0, M1). OS: 0.715

ACC: adrenocortical carcinoma; ACM: all-cause mortality; CSM: cancer-specific mortality; CSS: cancer-specific survival; OS: overall survival; RFS: recurrence-free survival. T, tumor. N,
lymph node. M, metastasis. N0, no positive lymph nodes; N1, positive lymph node(s); Nx, not harvested. M0, no distant metastases; M1, presence of distant metastasis. Complete
resection (R0); microscopically irradical (R1).* two external validation sets were used: the Cancer Genome Atlas set and a Chinese multicenter cohort dataset.
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It is interesting to note that although the work of Zini et al. [19] suffered from lack of detailed
prognostic information, their prediction model included age, stage, and surgery status. In our
analysis, we actually include a broad selection of potential predictor variables, and confirm age, stage,
and completeness of tumor resection to be significant predictors for ACC specific mortality. So, even in
the absence of detailed information, e.g., patients of whom no immunohistochemistry is available, it is
possible to make an estimate of cancer-specific mortality.

The study by Kebebew et al. [29] was not designed to develop a prediction model, but their highly
powered (n = 725) multivariable analysis for ACC mortality also showed that ACC stage, surgical
resection, and tumor grade (localized, regional, or distant) were independent prognostic factors.

There is a lack of consensus regarding the cut-off point and combination of pathologic criteria
that are associated with prognosis [20,30,31]. Consequently, there are limitations to the clinical use of
pathology criteria for ACC prognosis. Perhaps in the near future, results of genome and transcriptome
studies could be useful. The results of their potential prognostic value seem promising [10,32–34].
For example, hypermethylation of CpG islands, or as a pattern called CpG island methylator phenotype
(CIMP), is associated with a poor prognosis in ACC [10,33,35]. At the moment, a clearly defined picture
of CIMP in ACC is lacking, and although study results on CIMP patterns demonstrate a certain degree
of overlap, there are some (methodological) inconsistencies. Furthermore, it is uncertain whether
methylation status has the potential to become a prognostic factor on its own, or if it will be an additive
to a clinical prediction model, as presented in this study. The latter might be expected considering
the fact that DNA methylation is a dynamic process with potential fluctuations over time, and with
differences between primary tumor and metastasis. Libbert et al. recently presented a COMBI score,
integrating clinical predictors with number of somatic mutations, alterations in the Wnt/beta-catenin
and p53/Rb pathways, and promoter region methylation pattern. Again, heterogeneity of molecular
analysis and definition of cut-off values used pose a problem, but it could be useful as a prognostic
determinant in the future.

Individual biomarkers like G0S2 [34] and BUB1, PINK1 [36,37] might overcome the problem of
heterogeneity with CIMP, but those biomarkers merely identify ACC with a poor prognosis.

Some limitations of our study merit further mentioning. The prediction model is only applicable to
ACC patients of 18 years or older. The cohort we used had a relatively small sample size, which limited
the number of predictors for consideration in our model. In view of the fact that the Netherlands
currently holds 17 million inhabitants, the size of our study cohort is in agreement with the reported
incidence of ACC. In our opinion, the prediction model presented here has the potential to provide
a more individualized and practical estimate of the prognosis of ACC, compared to the currently
used staging system. Although our model was internally validated using bootstrap validation,
external validation is warranted before widespread implementation of the algorithm in a user-friendly
prediction calculator.

4. Materials and Methods

Data for this retrospective cohort study were obtained from the nine centers of the Dutch Adrenal
Network (DAN), as has been described earlier [23]. Patients of ≥18 years who presented with ACC
between 1 January 2004 and 31 October 2013 were included. Follow-up data was investigated until
30 June 2016. Because of missing Ki67 data in the original database, an attempt was made to revise the
Ki67 index, from 31 January 2018 until 2 April 2020.

4.1. Potential Predictor Variables

We identified potential predictor variables based on clinical reasoning, and on previously published
risk factors for mortality. These variables were age at the time of diagnosis [38], sex, body mass index
(BMI), TNM classification, hypercortisolism, complaints directly related to tumor mass, venous invasion,
ENSAT stage, modified ENSAT (mENSAT) stage [5], radical resection of the tumor (R0 variable ‘’yes”;
Rx/R1/R2 variable ‘’no”) [20,26], and Ki67 index.
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ENSAT stage was defined according to Fassnacht et al. [13]: stage I, tumor size ≤5 cm (T1N0M0);
stage II, tumor size >5 cm (T2N0M0); stage III, tumor of any size with at least one of the following
factors: tumor infiltration in surrounding tissue (T3), tumor invasion into adjacent organs, or venous
tumor thrombus in the vena cava or renal vein (T4), positive lymph node (N1), but no distant metastasis
(M0); and stage IV, the presence of distant metastases irrespective of tumor size or lymph node status
(T1-T4N0-N1M1). The mENSAT classification defines T3-4N0M0 as stage III (invasion of surrounding
tissues/organs, or invasion of the renal vein or inferior vena cava), and both T3-4N1M0-1 and T3-4N0M1
as stage IV. Stage IV is then subcategorized into Stage IVa (two involved organs), IVb (three involved
organs), and IVc (>three involved organs). The primary tumor and ‘’N” are included as ‘’organ” in the
count of number of involved organs [5].

Pathology was scored positive if venous invasion or capsular invasion were present according to
the Weiss criteria in the pathology report or capsular and/or vascular invasion was scored yes according
to the Van Slooten Index in the pathology report.

Hypercortisolism was defined clinically if this was reported by the treating physician in the
patients’ file or biochemical with a cortisol level above the upper limit of normal as defined by the
hospital laboratory where the patients’ cortisol level was analyzed. Cortisol level was determined
either in serum, saliva, 24-h urine, and/or during a dexamethasone suppression test.

Complaints due to tumor mass were scored yes if the patient had abdominal pain or back pain
that could be due/directly related to the tumor mass.

4.2. Immunohistochemistry Revision Ki67

An attempt was made to revise the Ki67 index for all 160 patients. We were able to track down 55
tumor samples.

To assess the number of cells in cycle (preparing for cell division), selected blocks were stained
at one location using the MIB-1 antibody (obtained from Dako, Glostrup, Denmark). All sections
were stained in an immunostainer (Ventana Benchmark Ultra, from Roche, Tucson, AZ, US) in 3 runs.
Sections were developed using the Optiview 3,3-diaminobenzidine (DAB) system (also from Roche) as
a second step and DAB as chromogen. To assess the number of stained cells, the area with the highest
staining intensity was searched for, and that area was magnified using a 40× objective (hot spot method).
All cells and all positive cells were counted, and the percentage of positive cells was calculated. A cell
was deemed positive when the nucleus was no longer blue. Additionally, faint staining was included as
positivity. As a control for the staining effectivity, a tissue microarray was mounted on each individual
stained slide.

Unfortunately, information on the Ki67 analytic process used for the other tumor samples in the
database is not available because of historical data.

4.3. Model Development

We chose to impute our data to prevent a loss of statistical precision and to decrease the likelihood
of obtaining biased results [39]. Imputation was performed using stochastic regression imputation with
fully conditional specification. Predictive mean matching was used to draw the values to be imputed.

Baseline characteristics of the participants were described using means and standard deviations
or absolute numbers and percentages. The overall survival of our cohort was estimated using the
Kaplan–Meier method. Median follow-up time was computed, including the first and third quartiles.
The median survival time was estimated including 95% confidence interval (CI) around the median.

We computed a correlation matrix to assess correlations between predictor variables. If variables
were highly correlated (Pearson’s correlation coefficient, or rho, >0.8), we chose to include only the
variable that was deemed more convenient to implement in a clinical prediction tool.

Multivariable Cox proportional hazards regression was used to estimate the coefficients in the
prediction model. Backward stepwise elimination was performed to derive a more parsimonious
model. We used the Akaike Information Criterion as the rule for deleting variables from the model,
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which corresponds to a more liberal alpha of 0.157 [40]. The correlation between the scaled Schoenfeld
residuals and time was computed for each variable to test the proportional hazards assumption [41].

The performance of the initial prediction model was quantified by measures of discriminative
ability and calibration. Discriminative ability is expressed as the c-index, which can take on any value
between 0.5 (no discriminative ability) and 1 (perfect discriminative ability), and is an estimate of the
probability that of any two randomly chosen patients, the one with the higher prognostic score will
outlive the one with the lower prognostic score [41]. Calibration was assessed by visual inspection of
the calibration plot. The calibration plot shows the agreement between predicted probabilities and
pseudo-observed event status at a follow-up time of two years.

4.4. Internal Validation of the Model

As a rule of thumb, it is suggested that for each potential predictor variable in the model, 10 events
should be observed to prevent overfitting. An overfitted model would perform well in the development
data, but poorly when applied to new patients. Often, such an overfitted model would produce too
extreme predictions. Since our dataset was relatively small, an internal validation step was performed
to counteract the possible overfitting of our model to the data. We used standard bootstrapping
techniques (B = 1000) to obtain optimism-corrected measures of performance (the c-index) and a
shrinkage factor. The shrinkage factor is calculated as the optimism-corrected calibration slope. It is a
constant between 0 and 1, and the regression coefficients are then shrunk by multiplying by this number.
These penalized regression coefficients produce fewer extreme predictions, and hence counteract the
effect of overfitting.

Finally, we stratified all patients into three groups based on their predicted risk score (i.e., low,
medium, and high risk) for both the model with and the model without the Ki67 index.

5. Conclusions

In conclusion, we have developed and internally validated an easy-to-use prediction model for
ACC-specific mortality; this model is essentially based on age, mENSAT stage, and completeness of
tumor resection.
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