502 research outputs found

    Risk of Pseudotumor Cerebri Syndrome (PTCS) with hormonal contraceptive use

    Get PDF
    Background: Hormonal contraceptives (HC), one of the most prescribed classes of medication in women, have been linked with pseudotumor cerebri syndrome (PTCS). To date, no large epidemiologic study has examined this association.Methods: A case-control study using the IMS LifeLink Pharmetrics Plus database was conducted. Cases had an ICD-9-CM code for benign intracranial hypertension as well as a procedural code for a CT or MRI and a code for lumbar puncture procedure within 15 days of the PTCS code. Controls were selected from the cohort using density-based sampling.Results: From a cohort of 9,053,240 subjects, there were 288 cases of PTCS corresponding to 2,880 controls. The adjusted RRs for two or more prescriptions of oral combined contraceptive was 0.62 (95% confidence interval 0.39-0.99). RRs for overall HC use was 0.91 (95% CI 0.39-2.12) for one prescription of HCs and 0.69 (95% CI 0.45-1.05) for two or more prescriptions. The RRs for one and two or more prescriptions of progestin only HCs were 0.75 (95% CI 0.08-7.46) and 1.06 (95% CI 0.42-2.69), respectively.Conclusions: Overall HC use does not have a significant effect on incidence of PTCS, however harm associated with progestin-only contraceptives cannot be excluded

    Shape reconstruction of three-dimensional conducting objects via near-field measurements

    Get PDF
    A general framework for the shape reconstruction of conducting objects is presented with the Newton minimization approach. Using a fully numerical method, the initial-guess object is evolved to reconstruct the target. The object is modeled by triangles such that the vertices are the unknowns of the inverse-scattering problem. The cost function is minimized as the evolving object converges to the actual target in merely tens of iterations. © 2014 IEEE

    Microwave imaging of three-dimensional conducting objects using the newton minimization approach

    Get PDF
    In this work, we present a framework to detect the shape of unknown perfect electric conducting objects by using inverse scattering and microwave imaging. The initialguess object, which evolves to achieve the target, is modeled by triangles such that vertices of the triangles are the unknowns of our problem

    Determining the best drought tolerance indices using Artificial Neural Network (ANN): Insight into application of intelligent agriculture in agronomy and plant breeding

    Get PDF
    In the present study, efficiency of the artificial neural network (ANN) method to identify the best drought tolerance indices was investigated. For this purpose, 25 durum genotypes were evaluated under rainfed and supplemental irrigation environments during two consecutive cropping seasons (2011–2013). The results of combined analysis of variance (ANOVA) revealed that year, environment, genotype and their interaction effects were significant for grain yield. Mean grain yield of the genotypes ranged from 184.93 g plot–1 under rainfed environment to 659.32 g plot–1 under irrigated environment. Based on the ANN results, yield stability index (YSI), harmonic mean (HM) and stress susceptible index (SSI) were identified as the best indices to predict drought-tolerant genotypes. However, mean productivity (MP) followed by geometric mean productivity (GMP) and HM were found to be accurate indices for screening drought tolerant genotypes. In general, our results indicated that genotypes G9, G12, G21, G23 and G24 were identified as more desirable genotypes for cultivation in drought-prone environments. Importantly, these results could provide an evidence that ANN method can play an important role in the selection of drought tolerant genotypes and also could be useful in other biological contexts

    Electromagnetic imaging of three-dimensional dielectric objects with Newton minimization

    Get PDF
    We present a general framework for detecting the shape and electrical properties of unknown objects by using the Newton minimization approach for solving inverse-scattering problems. This procedure is performed by evolving an initial-guess object iteratively until the cost function decreases to a desired value. Rapid convergence of this method is demonstrated by some numerical results. © 2014 IEEE

    Randomized, open-label, phase 1/2a study to determine the maximum tolerated dose of intraventricular sustained release nimodipine for subarachnoid hemorrhage (NEWTON [Nimodipine Microparticles to Enhance Recovery While Reducing Toxicity After Subarachnoid Hemorrhage])

    Get PDF
    BACKGROUND AND PURPOSE—: We conducted a randomized, open-label, phase 1/2a, dose-escalation study of intraventricular sustained-release nimodipine (EG-1962) to determine safety, tolerability, pharmacokinetics, and clinical effects in aneurysmal subarachnoid hemorrhage. METHODS—: Subjects with aneurysmal subarachnoid hemorrhage repaired by clipping or coiling were randomized to EG-1962 or enteral nimodipine. Subjects were World Federation of Neurological Surgeons grade 2 to 4 and had an external ventricular drain. Cohorts of 12 subjects received 100 to 1200 mg EG-1962 (9 per cohort) or enteral nimodipine (3 per cohort). The primary objective was to determine the maximum tolerated dose. RESULTS—: Fifty-four subjects in North America were randomized to EG-1962, and 18 subjects were randomized to enteral nimodipine. The maximum tolerated dose was 800 mg. One serious adverse event related to EG-1962 (400 mg) and 2 EG-1962 dose-limiting toxicities were without clinical sequelae. There was no EG-1962-related hypotension compared with 17% (3/18) with enteral nimodipine. Favorable outcome at 90 days on the extended Glasgow outcome scale occurred in 27/45 (60%, 95% confidence interval 46%–74%) EG-1962 subjects (5/9 with 100, 6/9 with 200, 7/9 with 400, 4/9 with 600, and 5/9 with 800 mg) and 5/18 (28%, 95% confidence interval 7%–48%, relative risk reduction of unfavorable outcome; 1.45, 95% confidence interval 1.04–2.03; P=0.027) enteral nimodipine subjects. EG-1962 reduced delayed cerebral ischemia (14/45 [31%] EG-1962 versus 11/18 [61%] enteral nimodipine) and rescue therapy (11/45 [24%] versus 10/18 [56%]). CONCLUSIONS—: EG-1962 was safe and tolerable to 800 mg, and in this, aneurysmal subarachnoid hemorrhage population was associated with reduced delayed cerebral ischemia and rescue therapy. Overall, the rate of favorable clinical outcome was greater in the EG-1962-treated group. CLINICAL TRIAL REGISTRATION—: URL: http://www.clinicaltrials.gov. Unique identifier: NCT01893190

    Delayed Cerebral Ischemia in Aneurysmal Subarachnoid Hemorrhage: Proposal of an Evidence-Based Combined Clinical and Imaging Reference Standard

    Get PDF
    Aneurysmal subarachnoid hemorrhage is associated with high morbidity and mortality, with delayed neurologic deficits from delayed cerebral ischemia contributing to a large portion of the adverse outcomes in this patient population. There is currently no consensus reference standard for establishing the diagnosis of delayed cerebral ischemia either in the research or clinical settings, ultimately limiting strategies for preventing delayed infarction and permanent neurologic deficits. There are currently both clinical and imaging-based criteria for the diagnosis of delayed neurologic deficits and vasospasm, respectively, however, neither clinical nor angiographic assessment alone has been shown to identify patients who develop adverse outcomes from delayed infarction. Thus, the purpose of this work is to propose a 3-tiered combined imaging and clinical reference standard based on evidence from the literature to standardize the diagnosis of delayed cerebral ischemia, both to allow consistency across research studies and to ultimately improve outcomes in the clinical setting

    Time-averaged heat transfer and vortex shedding of a singular and twin heated bluff bodies in cross flow

    Get PDF
    Flow characteristics in the onset of vortex shedding and heat transfer pattern over a single and two same-sized square prisms placed in tandem are studied numerically. All simulations are carried out for Reynolds numbers range varying from 1 to 200 and spacing between the prisms in the order of five widths of prism for in tandem configuration. The calculations are done employing a finite volume in-house computer program according to semi-implicit method for pressure linked equations-consistent (SIMPLEC) numerical procedure and nonstaggered mesh in 2-dimensional, steady/unsteady and incompressible flow regimes. The instantaneous and time-averaged streamlines as well as iso-therm pattern for different Reynolds numbers are analysed. Furthermore, the influence of Reynolds number and the onset of vortex shedding on the flow pattern are studied in detail. Three distinct patterns namely fully-attached, trailing-edge separation and leading-edge separation were observed

    Applicability of CAAT box-derived polymorphism (CBDP) markers for analysis of genetic diversity in durum wheat

    Get PDF
    Progress in plant molecular tools has been resulted in the development of gene-targeted and functional marker systems. CAAT box region is a different pattern of nucleotides with a consensus sequence, GGCCAATCT, which situated upstream of the start codon of eukaryote genes and plays an important role during transcription. In the present study, several CAAT box-derived polymorphism (CBDP) primers were used for fingerprinting in mini-core collection of durum wheat (including internationally developed breeding lines and Iranian landraces). Twelve selected primers amplified 98 loci, of which all were polymorphic. The average values of the polymorphism information content (PIC) and resolving power (Rp) were 0.31 and 9.16, respectively, indicating a high level of variability among studied genotypes. Analysis of molecular variance (AMOVA) indicated that 92% of the total variation resided among populations. The values of the percentage polymorphic bands (PPL), the observed (Na) and effective (Ne) number of alleles, Nei’s gene diversity (He) and Shannon’s information index (I) for Iranian landraces were higher than the breeding lines. The Fandendrogram obtained by cluster analysis grouped all individuals into three main clusters. Our results showed a remarkable level of genetic diversity among studied durum wheat, especially among Iranian landraces, which can be interest for future breeding programs. More importantly, the present study also revealed that CBDP technique was efficient and powerful tool to assess genetic diversity in wheat germplasm. Hence, this technique could be employed individually or in combination with other molecular markers to evaluate genetic diversity and relations among different species

    Assessment of genetic diversity among Iranian Triticum germplasm using agro-morphological traits and start codon targeted (SCoT) markers

    Get PDF
    The knowledge about genetic diversity in the wild relatives of wheat provides useful information for breeding programs and gene pool management. In the present study, an assessment of agro-morphological diversity and molecular variability among 70 accessions of Triticum, belonging to T. boeoticum, T. urartu, T. durum and T. aestivum species, collected from different regions of Iran was made. According to phenotypic analysis, all traits except peduncle length, stem diameter and the number of seeds per spike indicated a high level of diversity among studied accessions. Also, principal component analysis identified six components that explained 87.53% of the total variation in agro-morphological traits. In molecular analysis, 15 start codon targeted (SCoT) polymorphism primers produced 166 bands, out of which, 162 (97.59%) were polymorphic. Analysis of molecular variance (AMOVA) indicated the 63% of the variation resided among populations. The maximum value of polymorphism information content (PIC), the observed (Na) and effective (Ne) number of alleles, Nie’s gene diversity (He) and Shannon’s information index (I) was detected for T. boeoticum than the other species. The SCoT-based tree revealed three different groups corresponding to the genomic constitution in Triticum germplasm, which was in part confirmed by STRUCTURE and principal coordinate (PCoA) analyses. Our results indicated a remarkable level of genetic diversity among studied Iranian Triticum species, especially T. boeoticum, which can be of interest for future breeding and other analyses associated with future studies of the wild relatives of wheat. More importantly, our results revealed that SCoT markers could be used to accurate evaluate genetic diversity and phylogenetic relationships among different Triticum species
    • …
    corecore