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Abstract—1In this work, we present a framework to detect
the shape of unknown perfect electric conducting objects by
using inverse scattering and microwave imaging. The initial-
guess object, which evolves to achieve the target, is modeled by
triangles such that vertices of the triangles are the unknowns of
our problem.

I. INTRODUCTION

Object detection is used in a wide range of applica-
tions, from detecting cancer tumors to finding buried objects
[2],[3],[4]. The first aim of object detection is to find the
location and shape of an unknown target. Various methods are
applied to detect objects in different applications, and some
of the most important challenges involve overcoming non-
linearity and non-uniqueness of the solutions.

Inverse scattering is one of the most efficient ways to
retrieve the shapes and locations of targets. By illuminating
the objects with electromagnetic waves and collecting the
scattered fields, we try to obtain the shape of unknown object.
We begin with an initial guess of the unknown object. Then, by
comparing the scattered far-field patterns of the initial-guess
object and the real object, we evolve the initial-guess object
and update it iteratively such that we gradually decrease the
difference between the patterns. Finally, we achieve a match
with the unknown object.

In this paper, we model the object by one of its parameters,
such as the location of its surface nodes or by the conductivity,
permittivity, and permeability of the discretized space that
holds the object. Then, the model parameters are updated
iteratively by minimizing the mismatch between the measured
data of the target and the collected data from the modeled
object. Location of the surface nodes is a good choice of
parameter because we can decrease the number of unknowns,
compared to volume modeling.

II. CosT FUNCTION

We need to define a criterion to determine the difference
between the target object and the evolving object, the latter of
which should ultimately match the target. A suitable criterion
is the total mismatch of the measurements between the target
and the evolving object. Residual vector is defined as the
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mismatches of measurements between the target and evolving
object that can be shown as

e1()
e(x) = : ; ey
ey (x)
where ej(x) = S;(x) — m; is the mismatch between the

jth measured data from the evolving object S;(x) and the
Jjth measured data from target m;, and M is the number of
measurements. « is the unknown vector, which in our case
consists of the node coordinates.

We can define the summation of the magnitude of the
measurement mismatches as the cost function, that is the above
mentioned criterion. Hence, we define the cost function as
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III. THE NEWTON MINIMIZATION APPROACH

The goal in our minimization problem is to update the
unknown vector such that the cost function decreases at
each iteration. Thus, by using the Taylor-series expansion
of the cost function, and considering the first three terms
of this expansion, the quadratic form of the cost function
will be obtained around the unknown vector xj; of the kth
iteration [1]:
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where p, is the step vector that will update the unknown
vector in the kth iteration. To find the gradient vector g(x) =
VC(z) and the Hessian matrix G(xy) = VVC(xzx), we
expand the cost function in terms of the complex-valued
residuals of the measurements. Thus, we can write the cost
function as
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where the superscript H signifies the complex conjugate and
transpose of the vector. Using Eq. (4), the gradient vector can
be written as

C(xy) = eH(a:k) ce(xy) =ejer + ... + exsenr,



g(xy) = VC(zk)
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is the Jacobian matrix of the residual vector. We use a
numerical method to compute the elements of the Jacobian
matrix, as explained in the next section. To obtain the Hessian
matrix, we take the gradient of (5) to obtain

G(x),) = VVC (1) = 2Re{J (x) - J(z) + Q(x)}, (7)
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where Q(z) = Y en(x)FH and F,, = VVe,,(z).
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A. Optimization of the Cost Function

Methods that require the computation of the inverse of the
Hessian matrix G(x}) to optimize the cost function are not
suitable when we have a large number of unknowns. As a
result, we apply the steepest-descent method, which gives the
step vector p,, in the opposite direction to the gradient vector
of the cost function:

Pr = = VC(xk) = —Vigy- (®

By substituting Eq. (8) in Eq. (3), we obtain:
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Since our goal is to decrease the cost function, we need to
minimize the last two terms of the (9). Therefore, v, should
be chosen as

e = I /Y (10)
gf -G(xr) - g,
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B. Numerical Calculation of the Jacobian Matrix

To obtain the gradient vector g and the Hessian matrix G,
the Jacobian matrix of the residual vector is required. We used
a numerical method to calculate the Jacobian matrix. In this
method, for each column of the Jacobian matrix, the corre-
sponding unknown of that column is slightly perturbed, and
then the change in each measurement is calculated. Finally, by
using the first-order derivative approximation, each element
of the column is calculated. In choosing the perturbation
size, we should consider reasonable upper and lower limits.
One of the parameters that can determine the upper limit of
the perturbation size is the mesh size of the object. Clearly,
perturbations that are larger than the mesh size will change
the topology of the object. In addition, numerical calculation
of the derivatives imposes an upper limit for the perturbation
size. Obviously, large perturbation sizes lead to less accurate
numerical results. On the other hand, the lower limit of
choosing the perturbation size depends on the computational
accuracy of the forward solver, which computes the scattered
electric fields.

IV. NUMERICAL RESULTS

We reconstructed several conducting objects, such as
spheres, ellipsoids, and star shapes. In all cases, three compo-
nents of the node locations were assumed to be the unknowns.
For brevity, only the results corresponding to the reconstruc-
tion of a star-shaped object are presented in this paper. We
use 12 incident plane waves from 6 directions with theta and
phi polarizations to illuminate the target, and 26 scattering
directions per incidence in the reconstruction algorithm. The
incident directions are the +z, £y, and £z directions, and
the scattering directions were uniformly distributed around the
targets. The operating frequency was 10 GHz.

The initial-guess object was chosen to be a sphere of radius
10 mm centered at the origin. The radius of the star-shaped
target changes between 11 mm and 15 mm, and the target
is centered at the origin. As evident in Fig. 1, the evolving
object approaches the general shape of the target in the first
three iterations, and in the following iterations the object is
completely reconstructed. The cost function at each iteration
is shown in Fig. 2, where we can see a decrease in the cost
function, especially in the first five iterations. In the 25th
iteration, the cost function is decreased to 2.9% of its initial
value (below the stopping condition of 3%); therefore, the
program is stopped in this iteration.

The results show that we achieve a significant reduction in
the cost function in the first few iterations, and thus the target
object’s general shape will be quickly obtained. However, in
the following iterations, the speed of reduction of the cost
function decreases. Thus, the convergence of the cost function
to zero slows down.

V. CONCLUSIONS

In an effort to achieve the microwave imaging of three-
dimensional conducting objects, we use the Newton mini-
mization formulation to solve the inverse scattering problem.
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Fig. 1.  Reconstruction of a star-shaped object at 10 GHz, where the
transparent object is our target and the red object is the evolving object.
(a) Initial guess, (b) after three iterations, and (c) after 20 iterations.
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Fig. 2. Cost function for the reconstruction of a star-shaped object.

Following a rigorous formulation, we compute the Jacobian
matrix by employing a fully numerical approach. To this
end, derivatives of the cost function are obtained numerically.
This requires the efficient solution of a large number of
forward problems. We present results to demonstrate that the
shape reconstruction of various conducting objects can be
successfully accomplished.
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