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Abstract—We present a general framework for detecting the
shape and electrical properties of unknown objects by using
the Newton minimization approach for solving inverse-scattering
problems. This procedure is performed by evolving an initial-
guess object iteratively until the cost function decreases to a
desired value. Rapid convergence of this method is demonstrated
by some numerical results.

I. INTRODUCTION

Due to the nondestructive penetration property of electro-
magnetic waves, microwave imaging has been a suitable and
attractive technique for geophysical probing, target identifica-
tion, and medical imaging. The main goals of imaging are to
detect the location, shape, and electromagnetic material prop-
erties of an unknown object. Despite its importance, simulta-
neous determination of all of these parameters successfully is
quite rare. One of the most common biomedical applications
is breast cancer detection, and its goal is to find the location
of the tumor. One approach for microwave imaging is using
finite-difference time-domain simulators and then employing
radar and signal processing techniques [1]. Another approach
is to solve an inverse-scattering problem in the frequency
domain [2]. This method has a wide range of applications,
e.g., underground resource detection [3]. If the investigated
problem has such a geometry that is invariant in one direction,
the three-dimensional (3-D) inverse-scattering problem can be
transformed into a two-dimensional problem. Nevertheless, it
is not an easy task to determine simultaneously both the 3-D
shape and the material properties of an unknown object. In
this paper, to obtain the shape and electrical properties of an
unknown 3-D object, we solve an inverse-scattering problem
by minimizing a cost function [4] and by utilizing a forward
solver based on the multilevel fast multipole algorithm [5].

II. THE COST FUNCTION AND ITS MINIMIZATION

The general idea of a large group of minimization methods
is to start with an initial guess of the parameters of the
function that should be minimized and update this initial guess
iteratively in such a way that we ultimately obtain a set of
these parameters, which minimizes the target function. In this
work, we aim to detect the shape and material properties of
unknown objects simultaneously. For this goal, we start with
an initial-guess object and choose a set of initial values for the
material properties of the initial-guess object. By illuminating
the objects and collecting the scattered fields, we achieve two
sets of measurements. After defining the cost function as the

total mismatch between these two sets, our microwave imaging
problem can be transformed into the minimization of the cost
function. The cost function can be written as

C(x) =

M∑
i=1

|ei(x)|2 =

M∑
i=1

|Si(x)−mi|2, (1)

where ej(x) = Sj(x) − mj is the mismatch between the
jth measurements collected from the evolving initial-guess
object Sj(x) and the target mj , and M is the number
of measurements. In [2], where we only reconstructed the
shape of targets, we prepared a modeling vector x, which
contained the locations of nodes on the surface of the evolving
object, and updated this vector by using the steepest-descent
method such that the cost function decreased iteratively. In
this work, because we desire to obtain the electromagnetic
material properties of the target, we should consider these
electromagnetic properties in modeling the evolving initial-
guess object. Therefore, we define the material vector of the
evolving object at the kth iteration in the form

xm
k =

[
σk
εk

]
, (2)

where σk and εk are the conductivity and permittivity of the
evolving initial-guess object at the kth iteration. Similar to the
minimization method that we used in [2] to reconstruct the
shape of the target, we update the material vector elements
iteratively to obtain the material properties of the real object.
We update the material vector by

pk = − |gk|2

gT
k ·H(xm

k ) · gk

gk, (3)

where gk = ∇C(xm
k ) = Re{JH

(xm
k ) · e(xm

k )} and
H(xm

k ) = ∇∇C(xm
k ) = Re{JH

(xm
k ) · J(xm

k )} are the first
and second derivatives of the cost function at the kth iteration.
In these expressions J is the M × 2 Jacobian matrix and is
given by the expression

J(xm
k ) =

[
∂
∂σk

S1(x
m
k ) ... ∂

∂σk
Si(x

m
k ) ... ∂

∂σk
SM (xmk )

∂
∂εk

S1(x
m
k ) ... ∂

∂εk
Si(x

m
k ) ... ∂

∂εk
SM (xmk )

]T
, (4)

which contains the first derivatives of the measurements ob-
tained from the initial-guess object with respect to the con-
ductivity and permittivity. Using a similar numerical method
as in [2], we can calculate (4) and update the object’s electro-
magnetic properties.



III. NUMERICAL RESULTS

In this section, we present the results of detecting the shape
and material properties of a star-shaped object. The distances
of this object’s surface nodes from the origin range between
11 mm and 15 mm. The relative permittivity and conductivity
of the star-shaped object are 12 and 4 S/m, respectively. To
collect the measurement data sets, we illuminate the object by
12 incident plane waves from six different directions (the ±x,
±y, and ±z directions) with both theta and phi polarizations.
The phi and theta components of the scattered electric fields
are measured from 26 directions in the far-field region and the
operating frequency is 10 GHz.

The initial guess in this experiment is a sphere of radius
10 mm with a relative permittivity and conductivity of 6
and 6 S/m, respectively. In this experiment, we update the
geometry of the initial-guess object in five iterations, and in
the next five iterations, we update the material properties of
the object. As we can see in Fig. 2, the initial-guess object
reaches the general shape of the target in the first iterations,
and the cost function in Fig. 1 decreases significantly in these
iterations. The cost function finally drops to 4.9% of its initial
value. As evident from Fig. 1, the exact values of the material
properties of the target are obtained in 28 iterations.

Fig. 1. Reconstruction of the permittivity and conductivity of a star-shaped
target (the purple parts show the shape reconstruction iterations) and the cost
function in 28 iterations.

IV. CONCLUSION

The numerical results show the capability of our method in
detecting the electromagnetic properties of unknown objects
while we are reconstructing the shapes of these objects. The
cost function decreases significantly in the first iterations,
especially in the iterations where we update the geometry of

(a) (b)

(c) (d)
Fig. 2. Reconstruction of the star-shaped object at 10 GHz, where the yellow
object is the target and the transparent object is the evolving object, in the
(a) first iteration (initial guess), (b) fifth iteration, (c) fifteenth iteration, and
(d) twenty-eighth iteration.

the initial-guess object, and finally the speed of reducing of
the cost function slows down until it reaches zero.
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