235 research outputs found

    The implications of lag times between nitrate leaching losses and riverine loads for water quality policy

    Get PDF
    Understanding the lag time between land management and impacts on riverine nitrate–nitrogen (N) loads is critical to understand when action to mitigate nitrate–N leaching losses from the soil profile may start improving water quality. These lags occur due to leaching of nitrate–N through the subsurface (soil and groundwater). Actions to mitigate nitrate–N losses have been mandated in New Zealand policy to start showing improvements in water quality within five years. We estimated annual rates of nitrate–N leaching and annual nitrate–N loads for 77 river catchments from 1990 to 2018. Lag times between these losses and riverine loads were determined for 34 catchments but could not be determined in other catchments because they exhibited little change in nitrate–N leaching losses or loads. Lag times varied from 1 to 12 years according to factors like catchment size (Strahler stream order and altitude) and slope. For eight catchments where additional isotope and modelling data were available, the mean transit time for surface water at baseflow to pass through the catchment was on average 2.1 years less than, and never greater than, the mean lag time for nitrate–N, inferring our lag time estimates were robust. The median lag time for nitrate–N across the 34 catchments was 4.5 years, meaning that nearly half of these catchments wouldn’t exhibit decreases in nitrate–N because of practice change within the five years outlined in policy

    A 60 yr record of atmospheric carbon monoxide reconstructed from Greenland firn air

    Get PDF
    We present the first reconstruction of the Northern Hemisphere (NH) high latitude atmospheric carbon monoxide (CO) mole fraction from Greenland firn air. Firn air samples were collected at three deep ice core sites in Greenland (NGRIP in 2001, Summit in 2006 and NEEM in 2008). CO records from the three sites agree well with each other as well as with recent atmospheric measurements, indicating that CO is well preserved in the firn at these sites. CO atmospheric history was reconstructed back to the year 1950 from the measurements using a combination of two forward models of gas transport in firn and an inverse model. The reconstructed history suggests that Arctic CO in 1950 was 140–150 nmol mol-1, which is higher than today's values. CO mole fractions rose by 10–15 nmol mol-1 from 1950 to the 1970s and peaked in the 1970s or early 1980s, followed by a ˜ 30 nmol mol-1 decline to today's levels. We compare the CO history with the atmospheric histories of methane, light hydrocarbons, molecular hydrogen, CO stable isotopes and hydroxyl radicals (OH), as well as with published CO emission inventories and results of a historical run from a chemistry-transport model. We find that the reconstructed Greenland CO history cannot be reconciled with available emission inventories unless unrealistically large changes in OH are assumed. We argue that the available CO emission inventories strongly underestimate historical NH emissions, and fail to capture the emission decline starting in the late 1970s, which was most likely due to reduced emissions from road transportation in North America and Europe

    Extinction threshold in the spatial stochastic logistic model: space homogeneous case

    Get PDF
    We consider the extinction regime in the spatial stochastic logistic model in R^d (a.k.a. Bolker–Pacala–Dieckmann–Law model of spatial populations) using the first-order perturbation beyond the mean-field equation. In space homogeneous case (i.e. when the density is non-spatial and the covariance is translation invariant), we show that the perturbation converges as time tends to infinity; that yields the first-order approximation for the stationary density. Next, we study the critical mortality – the smallest constant death rate which ensures the extinction of the population – as a function of the mean-field scaling parameter ε>0. We find the leading term of the asymptotic expansion (as ε→0) of the critical mortality which is apparently different for the cases d≥3, d = 2, and d = 1

    A proposed architecture and method of operation for improving the protection of privacy and confidentiality in disease registers

    Get PDF
    BACKGROUND: Disease registers aim to collect information about all instances of a disease or condition in a defined population of individuals. Traditionally methods of operating disease registers have required that notifications of cases be identified by unique identifiers such as social security number or national identification number, or by ensembles of non-unique identifying data items, such as name, sex and date of birth. However, growing concern over the privacy and confidentiality aspects of disease registers may hinder their future operation. Technical solutions to these legitimate concerns are needed. DISCUSSION: An alternative method of operation is proposed which involves splitting the personal identifiers from the medical details at the source of notification, and separately encrypting each part using asymmetrical (public key) cryptographic methods. The identifying information is sent to a single Population Register, and the medical details to the relevant disease register. The Population Register uses probabilistic record linkage to assign a unique personal identification (UPI) number to each person notified to it, although not necessarily everyone in the entire population. This UPI is shared only with a single trusted third party whose sole function is to translate between this UPI and separate series of personal identification numbers which are specific to each disease register. SUMMARY: The system proposed would significantly improve the protection of privacy and confidentiality, while still allowing the efficient linkage of records between disease registers, under the control and supervision of the trusted third party and independent ethics committees. The proposed architecture could accommodate genetic databases and tissue banks as well as a wide range of other health and social data collections. It is important that proposals such as this are subject to widespread scrutiny by information security experts, researchers and interested members of the general public, alike

    Tumor surveillance by circulating microRNAs: a hypothesis

    Get PDF
    A growing body of experimental evidence supports the diagnostic relevance of circulating microRNAs in various diseases including cancer. The biological relevance of circulating microRNAs is, however, largely unknown, particularly in healthy individuals. Here, we propose a hypothesis based on the relative abundance of microRNAs with predominant tumor suppressor activity in the blood of healthy individuals. According to our hypothesis, certain sets of circulating microRNAs might function as a tumor surveillance mechanism exerting continuous inhibition on tumor formation. The microRNA-mediated tumor surveillance might complement cancer immune surveillance

    Convergent extension analysis in mouse whole embryo culture

    Get PDF
    Mutations have been identified in a non-canonical Wnt signalling cascade (the planar cell polarity pathway) in several mouse genetic models of severe neural tube defects. In each of these models, neurulation fails to be initiated at the 3-4 somite stage, leading to an almost entirely open neural tube (termed craniorachischisis). Studies in whole embryo culture have identified a defect in the morphogenetic process of convergent extension during gastrulation, preceding the onset of neural tube closure. The principal defect is a failure of midline extension, both in the neural plate and axial mesoderm. This leads to an abnormally wide neural plate in which the elevating neural folds are too far apart to achieve closure. In this chapter, we provide details of several experimental methods that can be used to evaluate convergent extension in cultured mouse embryos. We describe analytical methods that can reveal the abnormalities that characterise neurulation-stage embryos with defective planar cell polarity signalling, in particular the loop-tail (Lp; Vangl2) mutant

    Murine Dishevelled 3 Functions in Redundant Pathways with Dishevelled 1 and 2 in Normal Cardiac Outflow Tract, Cochlea, and Neural Tube Development

    Get PDF
    Dishevelled (Dvl) proteins are important signaling components of both the canonical β-catenin/Wnt pathway, which controls cell proliferation and patterning, and the planar cell polarity (PCP) pathway, which coordinates cell polarity within a sheet of cells and also directs convergent extension cell (CE) movements that produce narrowing and elongation of the tissue. Three mammalian Dvl genes have been identified and the developmental roles of Dvl1 and Dvl2 were previously determined. Here, we identify the functions of Dvl3 in development and provide evidence of functional redundancy among the three murine Dvls. Dvl3−/− mice died perinatally with cardiac outflow tract abnormalities, including double outlet right ventricle and persistent truncus arteriosis. These mutants also displayed a misorientated stereocilia in the organ of Corti, a phenotype that was enhanced with the additional loss of a single allele of the PCP component Vangl2/Ltap (LtapLp/+). Although neurulation appeared normal in both Dvl3−/− and LtapLp/+ mutants, Dvl3+/−;LtapLp/+ combined mutants displayed incomplete neural tube closure. Importantly, we show that many of the roles of Dvl3 are also shared by Dvl1 and Dvl2. More severe phenotypes were observed in Dvl3 mutants with the deficiency of another Dvl, and increasing Dvl dosage genetically with Dvl transgenes demonstrated the ability of Dvls to compensate for each other to enable normal development. Interestingly, global canonical Wnt signaling appeared largely unaffected in the double Dvl mutants, suggesting that low Dvl levels are sufficient for functional canonical Wnt signals. In summary, we demonstrate that Dvl3 is required for cardiac outflow tract development and describe its importance in the PCP pathway during neurulation and cochlea development. Finally, we establish several developmental processes in which the three Dvls are functionally redundant

    Modulation of 11β-hydroxysteroid dehydrogenase as a strategy to reduce vascular inflammation

    Get PDF
    Atherosclerosis is a chronic inflammatory disease in which initial vascular damage leads to extensive macrophage and lymphocyte infiltration. Although acutely glucocorticoids suppress inflammation, chronic glucocorticoid excess worsens atherosclerosis, possibly by exacerbating systemic cardiovascular risk factors. However, glucocorticoid action within the lesion may reduce neointimal proliferation and inflammation. Glucocorticoid levels within cells do not necessarily reflect circulating levels due to pre-receptor metabolism by 11β-hydroxysteroid dehydrogenases (11β-HSDs). 11β-HSD2 converts active glucocorticoids into inert 11-keto forms. 11β-HSD1 catalyses the reverse reaction, regenerating active glucocorticoids. 11β-HSD2-deficiency/ inhibition causes hypertension, whereas deficiency/ inhibition of 11β-HSD1 generates a cardioprotective lipid profile and improves glycemic control. Importantly, 11β-HSD1-deficiency/ inhibition is atheroprotective, whereas 11β-HSD2-deficiency accelerates atherosclerosis. These effects are largely independent of systemic risk factors, reflecting modulation of glucocorticoid action and inflammation within the vasculature. Here, we consider whether evidence linking the 11β-HSDs to vascular inflammation suggests these isozymes are potential therapeutic targets in vascular injury and atherosclerosis

    Genome-wide screens identify Toxoplasma gondii determinants of parasite fitness in IFNγ-activated murine macrophages

    Get PDF
    Macrophages play an essential role in the early immune response against Toxoplasma and are the cell type preferentially infected by the parasite in vivo. Interferon gamma (IFNγ) elicits a variety of anti-Toxoplasma activities in macrophages. Using a genome-wide CRISPR screen we identify 353 Toxoplasma genes that determine parasite fitness in naїve or IFNγ-activated murine macrophages, seven of which are further confirmed. We show that one of these genes encodes dense granule protein GRA45, which has a chaperone-like domain, is critical for correct localization of GRAs into the PVM and secretion of GRA effectors into the host cytoplasm. Parasites lacking GRA45 are more susceptible to IFNγ-mediated growth inhibition and have reduced virulence in mice. Together, we identify and characterize an important chaperone-like GRA in Toxoplasma and provide a resource for the community to further explore the function of Toxoplasma genes that determine fitness in IFNγ-activated macrophages
    • …
    corecore