21 research outputs found
Means to Quantify Vascular Cell File Numbers in Different Tissues
Publisher Copyright: © 2022, The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.Oriented cell divisions are crucial throughout plant development to define the final size and shape of organs and tissues. As most of the tissues in mature roots and stems are derived from vascular tissues, studying cell proliferation in the vascular cell lineage is of great importance. Although perturbations of vascular development are often visible already at the whole plant macroscopic phenotype level, a more detailed characterization of the vascular anatomy, cellular organization, and differentiation status of specific vascular cell types can provide insights into which pathway or developmental program is affected. In particular, defects in the frequency or orientation of cell divisions can be reliably identified from the number of vascular cell files. Here, we provide a detailed description of the different clearing, staining, and imaging techniques that allow precise phenotypic analysis of vascular tissues in different organs of the model plant Arabidopsis thaliana throughout development, including the quantification of cell file numbers, differentiation status of vascular cell types, and expression of reporter genes.Peer reviewe
Transcriptional regulatory framework for vascular cambium development in Arabidopsis roots
Vascular cambium, a lateral plant meristem is a central producer of woody biomass. Although a few transcription factors (TFs) have been shown to regulate cambial activity1, the phenotypes of the corresponding loss-of-function mutants are relatively modest, highlighting our limited understanding of the underlying transcriptional regulation. Here, we utilize cambium cell-specific transcript profiling followed by a combination of TF network and genetic analyses to identify 62 novel TF genotypes displaying an array of cambial phenotypes. This approach culminated in virtual loss of cambial activity when both WUSCHEL-RELATED HOMEOBOX 4 (WOX4) and KNOTTED-like from Arabidopsis thaliana 1 (KNAT1; also known as BREVIPEDICELLUS (BP) were mutated, thereby unlocking the genetic redundancy in the regulation of cambium development. We also identified TFs with dual functions in cambial cell proliferation and xylem differentiation, including WOX4, SHORT VEGETATIVE PHASE (SVP) and PETAL LOSS (PTL). Using the TF network information, we combined overexpression of the cambial activator WOX4 and removal of the putative inhibitor PTL to engineer Arabidopsis for enhanced radial growth. This line also showed ectopic cambial activity, thus further highlighting the central roles of WOX4 and PTL in cambium development.This work was supported by Finnish Centre of Excellence in Molecular Biology of Primary Producers (Academy of Finland CoE program 2014-2019) decision #271832, the Gatsby Foundation (GAT3395/PR3)), the University of Helsinki (award 799992091) and the European Research Council Advanced Investigator Grant SYMDEV (No. 323052) to Y.H.; Academy of Finland (grants #132376, #266431, #271832), University of Helsinki HiLIFE fellowship to A.P.M.; National Research Foundation of Korea (2018R1A5A1023599 and 2016R1A2B2015258) to J-Y. L
Ectopic callose deposition into woody biomass modulates the nano-architecture of macrofibrils
Plant biomass plays an increasingly important role in the circular bioeconomy, replacing non-renewable fossil resources. Genetic engineering of this lignocellulosic biomass could benefit biorefinery transformation chains by lowering economic and technological barriers to industrial processing. However, previous efforts have mostly targeted the major constituents of woody biomass: cellulose, hemicellulose and lignin. Here we report the engineering of wood structure through the introduction of callose, a polysaccharide novel to most secondary cell walls. Our multiscale analysis of genetically engineered poplar trees shows that callose deposition modulates cell wall porosity, water and lignin contents and increases the lignin-cellulose distance, ultimately resulting in substantially decreased biomass recalcitrance. We provide a model of the wood cell wall nano-architecture engineered to accommodate the hydrated callose inclusions. Ectopic polymer introduction into biomass manifests in new physico-chemical properties and offers new avenues when considering lignocellulose engineering.Bourdon et al. demonstrate the possibility to ectopically synthesize callose, a polymer restricted to primary cell walls, into Arabidopsis and aspen secondary cell walls to manipulate their ultrastructure and ultimately reduce their recalcitrance
Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch
Silver birch (Betula pendula) is a pioneer boreal tree that can be induced to flower within 1 year. Its rapid life cycle, small (440-Mb) genome, and advanced germplasm resources make birch an attractive model for forest biotechnology. We assembled and chromosomally anchored the nuclear genome of an inbred B. pendula individual. Gene duplicates from the paleohexaploid event were enriched for transcriptional regulation, whereas tandem duplicates were overrepresented by environmental responses. Population resequencing of 80 individuals showed effective population size crashes at major points of climatic upheaval. Selective sweeps were enriched among polyploid duplicates encoding key developmental and physiological triggering functions, suggesting that local adaptation has tuned the timing of and cross-talk between fundamental plant processes. Variation around the tightly-linked light response genes PHYC and FRS10 correlated with latitude and longitude and temperature, and with precipitation for PHYC. Similar associations characterized the growth-promoting cytokinin response regulator ARR1, and the wood development genes KAK and MED5A.Peer reviewe
Recommended from our members
Author Correction: Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch.
In the version of this article initially published, there was a mistake in the calculation of the nucleotide mutation rate per site per generation: 1 × 10−9 mutations per site per generation was used, whereas 9.5 × 10−9 was correct. This error affects the interpretation of population-size changes over time and their possible correspondence with known geological events, as shown in the original Fig. 4 and supporting discussion in the text, as well as details in the Supplementary Note. Neither the data themselves nor any other results are affected. Figure 4 has been revised accordingly. Images of the original and corrected figure panels are shown in the correction notice
Cytokinins initiate secondary growth in the Arabidopsis root through a set of LBD genes
During primary growth, plant tissues increase their length, and as these tissues mature, they initiate secondary growth to increase thickness.(1) It is not known what activates this transition to secondary growth. Cytokinins are key plant hormones regulating vascular development during both primary and secondary growth. During primary growth of Arabidopsis roots, cytokinins promote procambial cell proliferation(2,3) and vascular patterning together with the hormone auxin.(4-7) In the absence of cytokinins, secondary growth fails to initiate.(8) Enhanced cytokinin levels, in turn, promote secondary growth.(8,9) Despite the importance of cytokinins, little is known about the downstream signaling events in this process. Here, we show that cytokinins and a few downstream LATERAL ORGAN BOUNDARIES DOMAIN (LBD) family of transcription factors are rate limiting components in activating and further promoting secondary growth in Arabidopsis roots. Cytokinins directly activate transcription of two homologous LBD genes, LBD3 and LBD4. Two other homologous LBDs, LBD1 and LBD11, are induced only after prolonged cytokinin treatment. Our genetic studies revealed a two stage mechanism downstream of cytokinin signaling: while LBD3 and LBD4 regulate activation of secondary growth, LBD1, LBD3, LBD4, and LBD11 together promote further radial growth and maintenance of cambial stem cells. LBD overexpression promoted rapid cell growth followed by accelerated cell divisions, thus leading to enhanced secondary growth. Finally, we show that LBDs rapidly inhibit cytokinin signaling. Together, our data suggest that the cambium-promoting LBDs negatively feed back into cytokinin signaling to keep root secondary growth in balance.Peer reviewe
Recommended from our members
ELIMÄKI Locus Is Required for Vertical Proprioceptive Response in Birch Trees.
Tree architecture has evolved to support a top-heavy above-ground biomass, but this integral feature poses a weight-induced challenge to trunk stability. Maintaining an upright stem is expected to require vertical proprioception through feedback between sensing stem weight and responding with radial growth. Despite its apparent importance, the principle by which plant stems respond to vertical loading forces remains largely unknown. Here, by manipulating the stem weight of downy birch (Betula pubescens) trees, we show that cambial development is modulated systemically along the stem. We carried out a genetic study on the underlying regulation by combining an accelerated birch flowering program with a recessive mutation at the ELIMÄKI locus (EKI), which causes a mechanically defective response to weight stimulus resulting in stem collapse after just 3 months. We observed delayed wood morphogenesis in eki compared with WT, along with a more mechanically elastic cambial zone and radial compression of xylem cell size, indicating that rapid tissue differentiation is critical for cambial growth under mechanical stress. Furthermore, the touch-induced mechanosensory pathway was transcriptionally misregulated in eki, indicating that the ELIMÄKI locus is required to integrate the weight-growth feedback regulation. By studying this birch mutant, we were able to dissect vertical proprioception from the gravitropic response associated with reaction wood formation. Our study provides evidence for both local and systemic responses to mechanical stimuli during secondary plant development.The Academy of Finland Finnish Centre of Excellence in Molecular Biology of Primary Producers (CoE 2014-2019) project (271832) and the project (286404);
Gatsby Foundation (GAT3395/PR3);
University of Helsinki (award 799992091);
European Research Council Advanced Investigator Grant SYMDEV (323052
ELIMAKI Locus Is Required for Vertical Proprioceptive Response in Birch Trees
Tree architecture has evolved to support a top-heavy above-ground biomass, but this integral feature poses a weight-induced challenge to trunk stability. Maintaining an upright stem is expected to require vertical proprioception through feedback between sensing stem weight and responding with radial growth. Despite its apparent importance, the principle by which plant stems respond to vertical loading forces remains largely unknown. Here, by manipulating the stem weight of downy birch (Betula pubescens) trees, we show that cambial development is modulated systemically along the stem. We carried out a genetic study on the underlying regulation by combining an accelerated birch flowering program with a recessive mutation at the ELIMAKI locus (EKI), which causes a mechanically defective response to weight stimulus resulting in stem collapse after just 3 months. We observed delayed wood morphogenesis in eki compared with WT, along with a more mechanically elastic cambial zone and radial compression of xylem cell size, indicating that rapid tissue differentiation is critical for cambial growth under mechanical stress. Furthermore, the touch-induced mechanosensory pathway was transcriptionally misregulated in eki, indicating that the ELIMAKI locus is required to integrate the weight-growth feedback regulation. By studying this birch mutant, we were able to dissect vertical proprioception from the gravitropic response associated with reaction wood formation. Our study provides evidence for both local and systemic responses to mechanical stimuli during secondary plant development.Peer reviewe
Means to quantify vascular cell file numbers in different tissues
Oriented cell divisions are crucial throughout plant development to define the final size and shape of organs and tissues. As most of the tissues in mature roots and stems are derived from vascular tissues, studying cell proliferation in the vascular cell lineage is of great importance. Although perturbations of vascular development are often visible already at the whole plant macroscopic phenotype level, a more detailed characterization of the vascular anatomy, cellular organization and differentiation status of specific vascular cell types can provide insights into which pathway or developmental program is affected. In particular, defects in the frequency or orientation of cell divisions can be reliably identified from the number of vascular cell files. Here, we provide a detailed description of the different clearing, staining and imaging techniques that allow precise phenotypic analysis of vascular tissues in different organs of the model plant Arabidopsis thaliana throughout development, including the quantification of cell file numbers, differentiation status of vascular cell types and expression of reporter genes