6 research outputs found
Structural characterization of a novel peptide with antimicrobial activity from the venom gland of the scorpion Tityus stigmurus: Stigmurin
AbstractA new antimicrobial peptide, herein named Stigmurin, was selected based on a transcriptomic analysis of the Brazilian yellow scorpion Tityus stigmurus venom gland, an underexplored source for toxic peptides with possible biotechnological applications. Stigmurin was investigated in silico, by circular dichroism (CD) spectroscopy, and in vitro. The CD spectra suggested that this peptide interacts with membranes, changing its conformation in the presence of an amphipathic environment, with predominance of random coil and beta-sheet structures. Stigmurin exhibited antibacterial and antifungal activity, with minimal inhibitory concentrations ranging from 8.7 to 69.5μM. It was also showed that Stigmurin is toxic against SiHa and Vero E6 cell lines. The results suggest that Stigmurin can be considered a potential anti-infective drug
Combining Biofilm-Controlling Compounds and Antibiotics as a Promising New Way to Control Biofilm Infections
Many bacteria grow on surfaces forming biofilms. In this structure, they are well protected and often high dosages of antibiotics cannot clear infectious biofilms. The formation and stabilization of biofilms are mediated by diffusible autoinducers (e.g. N-acyl homoserine lactones, small peptides, furanosyl borate diester). Metabolites interfering with this process have been identified in plants, animals and microbes, and synthetic analogues are known. Additionally, this seems to be not the only way to control biofilms. Enzymes capable of cleaving essential components of the biofilm matrix, e.g. polysaccharides or extracellular DNA, and thus weakening the biofilm architecture have been identified. Bacteria also have mechanisms to dissolve their biofilms and return to planktonic lifestyle. Only a few compounds responsible for the signalling of these processes are known, but they may open a completely novel line of biofilm control. All these approaches lead to the destruction of the biofilm but not the killing of the pathogens. Therefore, a combination of biofilm-destroying compounds and antibiotics to handle biofilm infections is proposed. In this article, different approaches to combine biofilm-controlling compounds and antibiotics to fight biofilm infections are discussed, as well as the balance between biofilm formation and virulence
Prosthecate sphingomonads: proposal of Sphingomonas canadensis sp. nov.
Two stalked, aerobic, catalase- and oxidase-positive rod-shaped isolates, VKM B-1508 (=CB 258) and FWC47(T), were analysed using a polyphasic approach. While the morphology and the 16S rRNA gene sequence of strain VKM B-1508 were 100% identical to the ones of Sphingomonas leidyi DSM 4733(T), the morphology of FWC47(T) was different, and the closest recognized species were Sphingomonas oligophenolica S213(T) (=DSM 17107(T)) and Sphingomonas leidyi DSM 4733(T) with 97.2% and 97.0% 16S rRNA gene sequence similarity, respectively. DNA-DNA hybridization studies supported the differentiation of strain FWC47(T) from S. oligophenolica and S. leidyi. Strain FWC47(T) grew optimally at 28-30 degrees C, and pH 6.0-8.0. The major respiratory quinone was Q10 and the major polyamine was sym-homospermidine. The major fatty acids were C-17:1 omega 6c and C-18:1 omega 7c and C-15:0 2-OH was the major 2-hydroxy fatty acid. The major polar lipids were phosphatidylglycerol, diphosphatidylglycerol, phosphatidyldimethylethylamine and unidentified sphingoglycolipids. The G+C content of the genomic DNA of strain FWC47(T) was 67.1 mol%. Strain FWC47(T) differed from S. leidyi by its ability to assimilate L-alanine, maltose and sucrose, by the presence of beta-galactosidase and alpha-chymotrypsin, and the lack of valine arylamidase and beta-glucosidase activities. Contrary to S. leidyi, FWC47(T) did not reduce nitrate and could not use fructose, acetate and N-acetyl-glusosamine. In the genus Sphingomonas, the dimorphic life cycle involving a prosthecate sessile and a flagellated swarmer cell was hitherto only known from Sphingomonas leidyi. Therefore, strain FWC47(T) represents an additional distinct prosthecate species in this genus for which the name Sphingomonas canadensis is proposed. The type strain is FWC47(T) (=LMG 27141(T)=CCUG 62982(T))