2,233 research outputs found

    Editorial: Eliciting plant defense responses: From basic to applied science for sustainable agriculture

    Get PDF
    Plants constantly face a diversity of pathogens and insects that affect food production. Synthetic agrochemicals are often use to overcome these challenges. However, current demands for stringent worldwide regulatory policies led to the development of sustainable agriculture strategies, including naturally-derived molecules that elicit plant defense responses (Scariotto et al., 2021). The commercial use of these molecules is still limited, mostly due to poor knowledge on the molecular mechanisms producing their effects on plant metabolism. In recent decades, efforts have been directed toward understanding how individual molecules, such as immune receptors or microbial effectors, enable plants to perceive and respond to pathogens, insects, and other stresses. Furthermore, recent research on plant immunity has revealed high levels of complexity, including regulation mediated by micro-peptides and miRNA. Such knowledge opens the opportunity to link basic and applied science to facilitate using natural elicitors as a sustainable option for crop protection

    Lung adenocarcinoma originates from retrovirus infection of proliferating type 2 pneumocytes during pulmonary post-natal development or tissue repair

    Get PDF
    Jaagsiekte sheep retrovirus (JSRV) is a unique oncogenic virus with distinctive biological properties. JSRV is the only virus causing a naturally occurring lung cancer (ovine pulmonary adenocarcinoma, OPA) and possessing a major structural protein that functions as a dominant oncoprotein. Lung cancer is the major cause of death among cancer patients. OPA can be an extremely useful animal model in order to identify the cells originating lung adenocarcinoma and to study the early events of pulmonary carcinogenesis. In this study, we demonstrated that lung adenocarcinoma in sheep originates from infection and transformation of proliferating type 2 pneumocytes (termed here lung alveolar proliferating cells, LAPCs). We excluded that OPA originates from a bronchioalveolar stem cell, or from mature post-mitotic type 2 pneumocytes or from either proliferating or non-proliferating Clara cells. We show that young animals possess abundant LAPCs and are highly susceptible to JSRV infection and transformation. On the contrary, healthy adult sheep, which are normally resistant to experimental OPA induction, exhibit a relatively low number of LAPCs and are resistant to JSRV infection of the respiratory epithelium. Importantly, induction of lung injury increased dramatically the number of LAPCs in adult sheep and rendered these animals fully susceptible to JSRV infection and transformation. Furthermore, we show that JSRV preferentially infects actively dividing cell in vitro. Overall, our study provides unique insights into pulmonary biology and carcinogenesis and suggests that JSRV and its host have reached an evolutionary equilibrium in which productive infection (and transformation) can occur only in cells that are scarce for most of the lifespan of the sheep. Our data also indicate that, at least in this model, inflammation can predispose to retroviral infection and cancer

    Synergistic Antibacterial Effects of Metallic Nanoparticle Combinations

    Get PDF
    © The Author(s) 2019.Metallic nanoparticles have unique antimicrobial properties that make them suitable for use within medical and pharmaceutical devices to prevent the spread of infection in healthcare. The use of nanoparticles in healthcare is on the increase with silver being used in many devices. However, not all metallic nanoparticles can target and kill all disease-causing bacteria. To overcome this, a combination of several different metallic nanoparticles were used in this study to compare effects of multiple metallic nanoparticles when in combination than when used singly, as single elemental nanoparticles (SENPs), against two common hospital acquired pathogens (Staphylococcus aureus and Pseudomonas. aeruginosa). Flow cytometry LIVE/DEAD assay was used to determine rates of cell death within a bacterial population when exposed to the nanoparticles. Results were analysed using linear models to compare effectiveness of three different metallic nanoparticles, tungsten carbide (WC), silver (Ag) and copper (Cu), in combination and separately. Results show that when the nanoparticles are placed in combination (NPCs), antimicrobial effects significantly increase than when compared with SENPs (P < 0.01). This study demonstrates that certain metallic nanoparticles can be used in combination to improve the antimicrobial efficiency in destroying morphologically distinct pathogens within the healthcare and pharmaceutical industry.Peer reviewe

    Exploring Protein-Protein Interactions as Drug Targets for Anti-cancer Therapy with In Silico Workflows

    Get PDF
    We describe a computational protocol to aid the design of small molecule and peptide drugs that target protein-protein interactions, particularly for anti-cancer therapy. To achieve this goal, we explore multiple strategies, including finding binding hot spots, incorporating chemical similarity and bioactivity data, and sampling similar binding sites from homologous protein complexes. We demonstrate how to combine existing interdisciplinary resources with examples of semi-automated workflows. Finally, we discuss several major problems, including the occurrence of drug-resistant mutations, drug promiscuity, and the design of dual-effect inhibitors.Fil: Goncearenco, Alexander. National Institutes of Health; Estados UnidosFil: Li, Minghui. Soochow University; China. National Institutes of Health; Estados UnidosFil: Simonetti, Franco Lucio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Shoemaker, Benjamin A. National Institutes of Health; Estados UnidosFil: Panchenko, Anna R. National Institutes of Health; Estados Unido

    Enhanced error estimator based on a nearly equilibrated moving least squares recovery technique for FEM and XFEM

    Full text link
    In this paper a new technique aimed to obtain accurate estimates of the error in energy norm using a moving least squares (MLS) recovery-based procedure is presented. We explore the capabilities of a recovery technique based on an enhanced MLS fitting, which directly provides continuous interpolated fields, to obtain estimates of the error in energy norm as an alternative to the superconvergent patch recovery (SPR). Boundary equilibrium is enforced using a nearest point approach that modifies the MLS functional. Lagrange multipliers are used to impose a nearly exact satisfaction of the internal equilibrium equation. The numerical results show the high accuracy of the proposed error estimator

    How to identify essential genes from molecular networks?

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prediction of essential genes from molecular networks is a way to test the understanding of essentiality in the context of what is known about the network. However, the current knowledge on molecular network structures is incomplete yet, and consequently the strategies aimed to predict essential genes are prone to uncertain predictions. We propose that simultaneously evaluating different network structures and different algorithms representing gene essentiality (centrality measures) may identify essential genes in networks in a reliable fashion.</p> <p>Results</p> <p>By simultaneously analyzing 16 different centrality measures on 18 different reconstructed metabolic networks for <it>Saccharomyces cerevisiae</it>, we show that no single centrality measure identifies essential genes from these networks in a statistically significant way; however, the combination of at least 2 centrality measures achieves a reliable prediction of most but not all of the essential genes. No improvement is achieved in the prediction of essential genes when 3 or 4 centrality measures were combined.</p> <p>Conclusion</p> <p>The method reported here describes a reliable procedure to predict essential genes from molecular networks. Our results show that essential genes may be predicted only by combining centrality measures, revealing the complex nature of the function of essential genes.</p

    Toxoplasma gondii infection and liver disease: a case-control study in a Northern Mexican population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Infection with the protozoan parasite <it>Toxoplasma gondii </it>may cause liver disease. However, the impact of the infection in patients suffering from liver disease is unknown. Therefore, through a case-control study design, 75 adult liver disease patients attending a public hospital in Durango City, Mexico, and 150 controls from the general population of the same region matched by gender, age, and residence were examined with enzyme-linked immunoassays for the presence of anti-<it>Toxoplasma </it>IgG and anti-<it>Toxoplasma </it>IgM antibodies. Socio-demographic, clinical and behavioral characteristics from the study subjects were obtained.</p> <p>Results</p> <p>Seroprevalence of anti-<it>Toxoplasma </it>IgG antibodies and IgG titers did not differ significantly in patients (10/75; 13.3%) and controls (16/150; 10.7%). Two (2.7%) patients and 5 (3.3%) controls had anti-<it>Toxoplasma </it>IgM antibodies (<it>P </it>= 0.57). Seropositivity to <it>Toxoplasma </it>did not show any association with the diagnosis of liver disease. In contrast, seropositivity to <it>Toxoplasma </it>in patients was associated with consumption of venison and quail meat. <it>Toxoplasma </it>seropositivity was more frequent in patients with reflex impairment (27.8%) than in patients without this impairment (8.8%) (<it>P </it>= 0.05). Multivariate analysis showed that <it>Toxoplasma </it>seropositivity in patients was associated with consumption of sheep meat (OR = 8.69; 95% CI: 1.02-73.71; <it>P </it>= 0.04) and rabbit meat (OR = 4.61; 95% CI: 1.06-19.98; <it>P </it>= 0.04).</p> <p>Conclusions</p> <p>Seropositivity to <it>Toxoplasma </it>was comparable among liver disease patients and controls. Further studies with larger sample sizes are needed to elucidate the association of <it>Toxoplasma </it>with liver disease. Consumption of venison, and rabbit, sheep, and quail meats may warrant further investigation.</p
    corecore