16 research outputs found

    Cohort profile:the 'Biomarkers of heterogeneity in type 1 diabetes' study-a national prospective cohort study of clinical and metabolic phenotyping of individuals with long-standing type 1 diabetes in the Netherlands

    Get PDF
    PURPOSE: The 'Biomarkers of heterogeneity in type 1 diabetes' study cohort was set up to identify genetic, physiological and psychosocial factors explaining the observed heterogeneity in disease progression and the development of complications in people with long-standing type 1 diabetes (T1D). PARTICIPANTS: Data and samples were collected in two subsets. A prospective cohort of 611 participants aged ≥16 years with ≥5 years T1D duration from four Dutch Diabetes clinics between 2016 and 2021 (median age 32 years; median diabetes duration 12 years; 59% female; mean glycated haemoglobin (HbA1c) 61 mmol/mol (7.7%); 61% on insulin pump; 23% on continuous glucose monitoring (CGM)). Physical assessments were performed, blood and urine samples were collected, and participants completed questionnaires. A subgroup of participants underwent mixed-meal tolerance tests (MMTTs) at baseline (n=169) and at 1-year follow-up (n=104). Genetic data and linkage to medical and administrative records were also available. A second cross-sectional cohort included participants with ≥35 years of T1D duration (currently n=160; median age 64 years; median diabetes duration 45 years; 45% female; mean HbA1c 58 mmol/mol (7.4%); 51% on insulin pump; 83% on CGM), recruited from five centres and measurements, samples and 5-year retrospective data were collected. FINDINGS TO DATE: Stimulated residual C-peptide was detectable in an additional 10% of individuals compared with fasting residual C-peptide secretion. MMTT measurements at 90 min and 120 min showed good concordance with the MMTT total area under the curve. An overall decrease of C-peptide at 1-year follow-up was observed. Fasting residual C-peptide secretion is associated with a decreased risk of impaired awareness of hypoglycaemia. FUTURE PLANS:Research groups are invited to consider the use of these data and the sample collection. Future work will include additional hormones, beta-cell-directed autoimmunity, specific immune markers, microRNAs, metabolomics and gene expression data, combined with glucometrics, anthropometric and clinical data, and additional markers of residual beta-cell function. TRIAL REGISTRATION NUMBER: NCT04977635.</p

    During muscle atrophy, thick, but not thin, filament components are degraded by MuRF1-dependent ubiquitylation

    Get PDF
    Loss of myofibrillar proteins is a hallmark of atrophying muscle. Expression of muscle RING-finger 1 (MuRF1), a ubiquitin ligase, is markedly induced during atrophy, and MuRF1 deletion attenuates muscle wasting. We generated mice expressing a Ring-deletion mutant MuRF1, which binds but cannot ubiquitylate substrates. Mass spectrometry of the bound proteins in denervated muscle identified many myofibrillar components. Upon denervation or fasting, atrophying muscles show a loss of myosin-binding protein C (MyBP-C) and myosin light chains 1 and 2 (MyLC1 and MyLC2) from the myofibril, before any measurable decrease in myosin heavy chain (MyHC). Their selective loss requires MuRF1. MyHC is protected from ubiquitylation in myofibrils by associated proteins, but eventually undergoes MuRF1-dependent degradation. In contrast, MuRF1 ubiquitylates MyBP-C, MyLC1, and MyLC2, even in myofibrils. Because these proteins stabilize the thick filament, their selective ubiquitylation may facilitate thick filament disassembly. However, the thin filament components decreased by a mechanism not requiring MuRF1

    A GRFa2/Prop1/Stem (GPS) Cell Niche in the Pituitary

    Get PDF
    BACKGROUND: The adult endocrine pituitary is known to host several hormone-producing cells regulating major physiological processes during life. Some candidates to progenitor/stem cells have been proposed. However, not much is known about pituitary cell renewal throughout life and its homeostatic regulation during specific physiological changes, such as puberty or pregnancy, or in pathological conditions such as tumor development. PRINCIPAL FINDINGS: We have identified in rodents and humans a niche of non-endocrine cells characterized by the expression of GFRa2, a Ret co-receptor for Neurturin. These cells also express b-Catenin and E-cadherin in an oriented manner suggesting a planar polarity organization for the niche. In addition, cells in the niche uniquely express the pituitary-specific transcription factor Prop1, as well as known progenitor/stem markers such as Sox2, Sox9 and Oct4. Half of these GPS (GFRa2/Prop1/Stem) cells express S-100 whereas surrounding elongated cells in contact with GPS cells express Vimentin. GFRa2+-cells form non-endocrine spheroids in culture. These spheroids can be differentiated to hormone-producing cells or neurons outlining the neuroectoderm potential of these progenitors. In vivo, GPSs cells display slow proliferation after birth, retain BrdU label and show long telomeres in its nuclei, indicating progenitor/stem cell properties in vivo. SIGNIFICANCE: Our results suggest the presence in the adult pituitary of a specific niche of cells characterized by the expression of GFRa2, the pituitary-specific protein Prop1 and stem cell markers. These GPS cells are able to produce different hormone-producing and neuron-like cells and they may therefore contribute to postnatal pituitary homeostasis. Indeed, the relative abundance of GPS numbers is altered in Cdk4-deficient mice, a model of hypopituitarism induced by the lack of this cyclin-dependent kinase. Thus, GPS cells may display functional relevance in the physiological expansion of the pituitary gland throughout life as well as protection from pituitary disease

    C-peptide and metabolic outcomes in trials of disease modifying therapy in new-onset type 1 diabetes: an individual participant meta-analysis

    Get PDF
    Background Metabolic outcomes in type 1 diabetes remain suboptimal. Disease modifying therapy to prevent β-cell loss presents an alternative treatment framework but the effect on metabolic outcomes is unclear. We, therefore, aimed to define the relationship between insulin C-peptide as a marker of β-cell function and metabolic outcomes in new-onset type 1 diabetes. Methods 21 trials of disease-modifying interventions within 100 days of type 1 diabetes diagnosis comprising 1315 adults (ie, those 18 years and older) and 1396 children (ie, those younger than 18 years) were combined. Endpoints assessed were stimulated area under the curve C-peptide, HbA1c, insulin use, hypoglycaemic events, and composite scores (such as insulin dose adjusted A1c, total daily insulin, U/kg per day, and BETA-2 score). Positive studies were defined as those meeting their primary endpoint. Differences in outcomes between active and control groups were assessed using the Wilcoxon rank test. Findings 6 months after treatment, a 24·8% greater C-peptide preservation in positive studies was associated with a 0·55% lower HbA1c (p<0·0001), with differences being detectable as early as 3 months. Cross-sectional analysis, combining positive and negative studies, was consistent with this proportionality: a 55% improvement in C-peptide preservation was associated with 0·64% lower HbA1c (p<0·0001). Higher initial C-peptide levels and greater preservation were associated with greater improvement in HbA1c. For HbA1c, IDAAC, and BETA-2 score, sample size predictions indicated that 2–3 times as many participants per group would be required to show a difference at 6 months as compared with C-peptide. Detecting a reduction in hypoglycaemia was affected by reporting methods. Interpretation Interventions that preserve β-cell function are effective at improving metabolic outcomes in new-onset type 1 diabetes, confirming their potential as adjuncts to insulin. We have shown that improvements in HbA1c are directly proportional to the degree of C-peptide preservation, quantifying this relationship, and supporting the use of C-peptides as a surrogate endpoint in clinical trials

    Latres, Esther

    No full text

    Islet cells in T1D:from recent advances to novel therapies - a symposium-based roadmap for future

    Get PDF
    There is a growing understanding that the early phases of type 1 diabetes (T1D) are characterised by a deleterious dialogue between the pancreatic beta cells and the immune system. This, combined with the urgent need to better translate this growing knowledge into novel therapies, provided the background for the JDRF–DiabetesUK–INNODIA–nPOD symposium entitled ‘Islet cells in human T1D: from recent advances to novel therapies’, which took place in Stockholm, Sweden, in September 2022. We provide in this article an overview of the main themes addressed in the symposium, pointing to both promising conclusions and key unmet needs that remain to be addressed in order to achieve better approaches to prevent or reverse T1D

    Role of F-Box Protein βTrcp1 in Mammary Gland Development and Tumorigenesis

    Get PDF
    The F-box protein βTrcp1 controls the stability of several crucial regulators of proliferation and apoptosis, including certain inhibitors of the NF-κB family of transcription factors. Here we show that mammary glands of βTrcp1(−/−) female mice display a hypoplastic phenotype, whereas no effects on cell proliferation are observed in other somatic cells. To investigate further the role of βTrcp1 in mammary gland development, we generated transgenic mice expressing human βTrcp1 targeted to epithelial cells under the control of the mouse mammary tumor virus (MMTV) long terminal repeat promoter. Compared to controls, MMTV βTrcp1 mammary glands display an increase in lateral ductal branching and extensive arrays of alveolus-like protuberances. The mammary epithelia of MMTV βTrcp1 mice proliferate more and show increased NF-κB DNA binding activity and higher levels of nuclear NF-κB p65/RelA. In addition, 38% of transgenic mice develop tumors, including mammary, ovarian, and uterine carcinomas. The targeting of βTrcp1 to lymphoid organs produces no effects on these tissues. In summary, our results support the notion that βTrcp1 positively controls the proliferation of breast epithelium and indicate that alteration of βTrcp1 function and expression may contribute to malignant behavior of breast tumors, at least in part through NF-κB transactivation

    Limited overlapping roles of P15(INK4b) and P18(INK4c) cell cycle inhibitors in proliferation and tumorigenesis

    No full text
    Entry of quiescent cells into the cell cycle is driven by the cyclin D-dependent kinases Cdk4 and Cdk6. These kinases are negatively regulated by the INK4 cell cycle inhibitors. We report the generation of mice defective in P15(INK4b) and P18(INK4c). Ablation of these genes, either alone or in combination, does not abrogate cell contact inhibition or senescence of mouse embryo fibroblasts in culture. However, loss of P15(INK4b), but not of P18(INK4c), confers proliferative advantage to these cells and makes them more sensitive to transformation by H-ras oncogenes. In vivo, ablation of P15(INK4b) and P18(INK4c) genes results in lymphoproliferative disorders and tumor formation. Mice lacking P18(INK4c) have deregulated epithelial cell growth leading to the formation of cysts, mostly in the cortical region of the kidneys and the mammary epithelium. Loss of both P15(INK4b) and P18(INK4c) does not result in significantly distinct phenotypic manifestations except for the appearance of cysts in additional tissues. These results indicate that P15(INK4b) and P18(IKN4c) are tumor suppressor proteins that act in different cellular lineages and/or pathways with limited compensatory roles

    The E3 Ligase MuRF1 degrades myosin heavy chain protein in dexamethasone-treated skeletal muscle.

    Get PDF
    Skeletal muscle atrophy occurs as a side effect of treatment with synthetic glucocorticoids such as dexamethasone (DEX) and is a hallmark of cachectic syndromes associated with increased cortisol levels. The E3 ubiquitin ligase MuRF1 (muscle RING finger protein 1) is transcriptionally upregulated by DEX treatment. Differentiated myotubes treated with DEX undergo depletion of myosin heavy chain protein (MYH), which physically associates with MuRF1. This loss of MYH can be blocked by inhibition of MuRF1 expression. When wild-type and MuRF1(-/-) mice are treated with DEX, the MuRF1(-/-) animals exhibit a relative sparing of MYH. In vitro, MuRF1 is shown to function as an E3 ubiquitin ligase for MYH. These data identify the mechanism by which MYH is depleted under atrophy conditions and demonstrate that inhibition of a single E3 ligase, MuRF1, is sufficient to maintain this important sarcomeric protein
    corecore