7 research outputs found

    Discovery and evaluation of novel Mycobacterium tuberculosis ketol-acid reductoisomerase inhibitors as therapeutic drug leads

    No full text
    Tuberculosis (TB) remains a major threat to human health. This due to the fact that current drug treatments are less than optimal and the increasing occurrence of multi drug-resistant strains of etiological agent, Mycobacterium tuberculosis (Mt). Given the wide-spread significance of this disease, we have undertaken a design and evaluation program to discover new anti-TB drug leads. Here, we focused on ketol-acid reductoisomerase (KARI), the second enzyme in the branched-chain amino acid biosynthesis pathway. Importantly, this enzyme is present in bacteria but not in humans, making it an attractive proposition for drug discovery. In the present work, we used molecular docking to identify seventeen potential inhibitors of KARI using an in-house database. Compounds were selected based on docking scores, which were assigned as the result of favourable interactions between the compound and the active site of KARI. The inhibitory constant values for two leads, compounds 14 and 16 are 3.71 and 3.06\ua0µM respectively. To assess the mode of binding, 100\ua0ns molecular dynamics simulations for these two compounds in association with Mt KARI were performed and showed that the complex was stable with an average root mean square deviation of less than 3.5\ua0Å for all atoms. Furthermore, compound 16 showed a minimum inhibitory concentration of 2.06 ± 0.91\ua0µM and a 1.9 fold logarithmic reduction in the growth of Mt in an infected macrophage model. The two compounds exhibited low toxicity against RAW 264.7 cell lines. Thus, both compounds are promising candidates for development as an anti-TB drug leads

    S-alkylated thiosemicarbazone derivatives: Synthesis, crystal structure determination, antimicrobial activity evaluation and molecular docking studies

    No full text
    Increasing antimicrobial resistance is one of the most serious threats to human health worldwide. Therefore, there is an urgent need for the discovery of novel antimicrobial agents. Herein, we presented the synthesis of ten thiosemicarbazone derivatives (T1-T10) obtained by the reaction of S-alkylthiosemicarbazide with various dicarbonyl derivatives. The compounds were characterized by IR, H-1 NMR, ESI-MS and X-ray crystallography. Reaction with the dicarbonyl compound bearing the 4-fluorobenzoyl group unexpectedly gave a pyrazole derivative (T8) containing the entire S-methylthiosemicarbazone backbone. We extensively screened these derivatives for their antimicrobial activities against Mycobacterium tuberculosis and various bacterial and Candida strains. Additionally, the biofilm inhibition capacity of T8 was evaluated on Staphylococcus epidermidis and Pseudomonas aeruginosa biofilm positive strains. To find out the potential mechanism of anti-biofilm activity against PAO1, the docking studies of T8 were carried out into the binding site of LasR, which is the main regulator of bacterial cell-to-cell communication system known as quorum sensing. (C) 2021 Elsevier B.V. All rights reserved

    Design and development of ((4-methoxyphenyl)carbamoyl) (5-(5-nitrothiophen-2-yl)-1,3,4-thiadiazol-2-yl)amide analogues as Mycobacterium tuberculosis ketol-acid reductoisomerase inhibitors

    No full text
    Based on our previous finding that the titled compound possesses anti-tuberculosis activity, a series of novel ((4-methoxyphenyl)carbamoyl) (5-(5-nitrothiophen-2-yl)-1,3,4-thiadiazol-2-yl)amide analogues have been synthesized. Amongst the 22 compounds synthesized and tested, 5b, 5c and 6c showed potent inhibitory activity with K values of 2.02, 5.48 and 4.72 μM for their target, Mycobacterium tuberculosis (Mt) ketol-acid reductoisomerase (KARI). In addition, these compounds have excellent in vitro activity against Mt H37Rv with MIC values as low as 1 μM. The mode of binding for these compounds to Mt KARI was investigated through molecular docking and dynamics simulations. Furthermore, these compounds were evaluated for their activity in Mt infected macrophages, and showed inhibitory activities with up to a 1.9-fold reduction in growth (at 10 μM concentration). They also inhibited Mt growth in a nutrient starved model by up to 2.5-fold. In addition, these compounds exhibited low toxicity against HEK 293T cell lines. Thus, these compounds are promising Mt KARI inhibitors that can be further optimized into anti-tuberculosis agents

    <i>In vitro</i> and <i>in silico</i> exploration of newly synthesized triazolyl- isonicotinohydrazides as potent antitubercular agents

    No full text
    In the present study, we have reported the synthesis of novel isoniazid-triazole derivatives (4a-r), via the click chemistry approach. The synthesized isoniazid-triazole derivatives have potent in vitro antitubercular activity against the Mycobacterium tuberculosis (MTB) H37Rv strain. Among these compounds, 4b, 4f, 4g, 4j, 4k, 4m, 4o, 4p, and 4r were found to be the most active ones with a MIC value of 0.78 μg/mL. This activity is better than ciprofloxacin (MIC value = 1.56 μg/mL) and ethambutol (MIC value = 3.12 μg/mL). The compounds, 4a, 4c, 4d, 4e, 4h, 4i, 4l, and 4n have displayed activity equal to ciprofloxacin (MIC value = 1.56 μg/mL). The cytotoxicity of the active isoniazid-triazole derivatives was studied against RAW 264.7 cell line by MTT assay at 25 μg/mL concentration and no toxicity was observed. Moreover, in-vitro results were supported by in-silico studies with the known antitubercular target (PanK). The drug-likeness, density functional study, molecular docking, and molecular dynamics simulation studies of isoniazid-triazole derivatives validated the ability to form a stable complex with Pantothenate kinase (PanK), which will result in inhibiting the Pantothenate kinase (PanK). Therefore, the results obtained indicate that this class of compounds may offer candidates for future development, and positively provide drug alternatives for tuberculosis treatment. Communicated by Ramaswamy H. Sarma</p
    corecore