89 research outputs found

    Effect of gelation temperature on the properties of skim milk gels made from plant coagulants and chymosin

    Get PDF
    Reconstituted skim milk was gelled at 25-40°C with the plant-origin coagulants from Cynara cardunculus L. or Cynara humilis L. or with fermentation-produced chymosin. Gel formation and ageing were monitored by low amplitude oscillatory rheology and confocal scanning laser microscopy. Arrhenius plots for the rate of milk gelation were also determined. Plant coagulants had shorter gelation time (tg) at 25°C, 35°C and 40°C, and higher initial rate of increase in G' values at all temperatures tested. The firmest gels at long ageing times were produced by chymosin at 30°C and 32°C. At a gelation temperature of 25°C, the differences in rheological and microstructural characteristics between plant coagulants and chymosin were considerable; plant coagulants had shorter tg and higher G' values. For the lowest gelation temperatures, plant coagulants had smaller activation energy values for gelation. Most of the gelation results were similar between plant coagulants, but some differences were found in the values of tg, the rate of increase in G' and loss tangent parameter. The characteristics of gels produced with plant coagulants were influenced less by the changes in temperature compared with chymosin-produced gels, which may be an important consideration in using plant-origin coagulants in the production of cheeses with a wider range of gelation temperatures.http://www.sciencedirect.com/science/article/B6T7C-493HNG1-1/1/35f20b14e49b2922b16639bac3576d1

    P8 - Marine fungi exhibit antimicrobial activity against human oral pathogens

    Get PDF
    The emergence of resistance to antibiotics and antimycotics has become a challenge in the treatment of infectious diseases, including infections of the oral cavity. Marine fungi are a source of novel biologically active compounds, namely in what concerns the development of antimicrobial and anticancer solutions. Our study aimed to test the antimicrobial activity and the cytotoxicity of the extracts of the two recent identified species of marine fungi, Penicillum lusitanum and Aspergillus affinis. Candida spp. and Enterococcus faecalis isolated from oral pathologies were included to evaluate the antimicrobial potential of the marine fungi by the disk diffusion assay. The cytotoxicity of the effective concentrations of the extract was tested using the Vero cell line (ECACC 88020401, African Green Monkey Kidney cells, GMK clone), according to the ISO 10993-5. The extracts of P. lusitanum and A. affinis were active against C. albicans and E. faecalis, respectively. Penicillum lusitanum active extracts are non-cytotoxic, in contrast to A. affinis extracts that showed high cytotoxic effects on Vero cells, for all concentrations tested. The results on the biological characterization of the P. lusitanumextract are promising and support the development of new disinfecting solutions that may be used during root canal therapy cleaning and shaping.info:eu-repo/semantics/publishedVersio

    Limited effect of chronic valproic acid treatment in a mouse model of Machado-Joseph disease

    Get PDF
    Machado-Joseph disease (MJD) is an inherited neurodegenerative disease, caused by a CAG repeat expansion within the coding region of ATXN3 gene, and which currently lacks effective treatment. In this work we tested the therapeutic efficacy of chronic treatment with valproic acid (VPA) (200mg/kg), a compound with known neuroprotection activity, and previously shown to be effective in cell, fly and nematode models of MJD. We show that chronic VPA treatment in the CMVMJD135 mouse model had limited effects in the motor deficits of these mice, seen mostly at late stages in the motor swimming, beam walk, rotarod and spontaneous locomotor activity tests, and did not modify the ATXN3 inclusion load and astrogliosis in affected brain regions. However, VPA chronic treatment was able to increase GRP78 protein levels at 30 weeks of age, one of its known neuroprotective effects, confirming target engagement. In spite of limited results, the use of another dosage of VPA or of VPA in a combined therapy with molecules targeting other pathways, cannot be excluded as potential strategies for MJD therapeuticsPM received funding from Ataxia UK Grant (Project: Pharmacologic therapy for Machado-Joseph disease: from a C. elegans drug screen to a mouse model validation). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.info:eu-repo/semantics/publishedVersio

    Building a Portuguese coalition for biodiversity genomics

    Get PDF
    The diverse physiography of the Portuguese land and marine territory, spanning from continental Europe to the Atlantic archipelagos, has made it an important repository of biodiversity throughout the Pleistocene glacial cycles, leading to a remarkable diversity of species and ecosystems. This rich biodiversity is under threat from anthropogenic drivers, such as climate change, invasive species, land use changes, overexploitation, or pathogen (re)emergence. The inventory, characterisation, and study of biodiversity at inter- and intra-specific levels using genomics is crucial to promote its preservation and recovery by informing biodiversity conservation policies, management measures, and research. The participation of researchers from Portuguese institutions in the European Reference Genome Atlas (ERGA) initiative and its pilot effort to generate reference genomes for European biodiversity has reinforced the establishment of Biogenome Portugal. This nascent institutional network will connect the national community of researchers in genomics. Here, we describe the Portuguese contribution to ERGA’s pilot effort, which will generate high-quality reference genomes of six species from Portugal that are endemic, iconic, and/or endangered and include plants, insects, and vertebrates (fish, birds, and mammals) from mainland Portugal or the Azores islands. In addition, we outline the objectives of Biogenome Portugal, which aims to (i) promote scientific collaboration, (ii) contribute to advanced training, (iii) stimulate the participation of institutions and researchers based in Portugal in international biodiversity genomics initiatives, and (iv) contribute to the transfer of knowledge to stakeholders and engaging the public to preserve biodiversity. This initiative will strengthen biodiversity genomics research in Portugal and fuel the genomic inventory of Portuguese eukaryotic species. Such efforts will be critical to the conservation of the country’s rich biodiversity and will contribute to ERGA’s goal of generating reference genomes for European species.info:eu-repo/semantics/publishedVersio

    Nuclear Reprogramming: Kinetics of Cell Cycle and Metabolic Progression as Determinants of Success

    Get PDF
    Establishment of totipotency after somatic cell nuclear transfer (NT) requires not only reprogramming of gene expression, but also conversion of the cell cycle from quiescence to the precisely timed sequence of embryonic cleavage. Inadequate adaptation of the somatic nucleus to the embryonic cell cycle regime may lay the foundation for NT embryo failure and their reported lower cell counts. We combined bright field and fluorescence imaging of histone H2b-GFP expressing mouse embryos, to record cell divisions up to the blastocyst stage. This allowed us to quantitatively analyze cleavage kinetics of cloned embryos and revealed an extended and inconstant duration of the second and third cell cycles compared to fertilized controls generated by intracytoplasmic sperm injection (ICSI). Compared to fertilized embryos, slow and fast cleaving NT embryos presented similar rates of errors in M phase, but were considerably less tolerant to mitotic errors and underwent cleavage arrest. Although NT embryos vary substantially in their speed of cell cycle progression, transcriptome analysis did not detect systematic differences between fast and slow NT embryos. Profiling of amino acid turnover during pre-implantation development revealed that NT embryos consume lower amounts of amino acids, in particular arginine, than fertilized embryos until morula stage. An increased arginine supplementation enhanced development to blastocyst and increased embryo cell numbers. We conclude that a cell cycle delay, which is independent of pluripotency marker reactivation, and metabolic restraints reduce cell counts of NT embryos and impede their development

    Regulation of Adipocyte 11β-Hydroxysteroid Dehydrogenase Type 1 (11β-HSD1) by CCAAT/Enhancer-Binding Protein (C/EBP) β Isoforms, LIP and LAP

    Get PDF
    11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) catalyses intracellular regeneration of active glucocorticoids, notably in liver and adipose tissue. 11β-HSD1 is increased selectively in adipose tissue in human obesity, a change implicated in the pathogenesis of metabolic syndrome. With high fat (HF)-feeding, adipose tissue 11β-HSD1 is down-regulated in mice, plausibly to counteract metabolic disease. Transcription of 11β-HSD1 is directly regulated by members of the CCAAT/enhancer binding protein (C/EBP) family. Here we show that while total C/EBPβ in adipose tissue is unaltered by HF diet, the ratio of the C/EBPβ isoforms liver-enriched inhibitor protein (LIP) and liver-enriched activator protein (LAP) (C/EBPβ-LIP:LAP) is increased in subcutaneous adipose. This may cause changes in 11β-HSD1 expression since genetically modified C/EBPβ(+/L) mice, with increased C/EBPβ-LIP:LAP ratio, have decreased subcutaneous adipose 11β-HSD1 mRNA levels, whereas C/EBPβΔuORF mice, with decreased C/EBPβ-LIP:LAP ratio, show increased subcutaneous adipose 11β-HSD1. C/EBPβ-LIP:LAP ratio is regulated by endoplasmic reticulum (ER) stress and mTOR signalling, both of which are altered in obesity. In 3T3-L1 adipocytes, 11β-HSD1 mRNA levels were down-regulated following induction of ER stress by tunicamycin but were up-regulated following inhibition of mTOR by rapamycin. These data point to a central role for C/EBPβ and its processing to LIP and LAP in transcriptional regulation of 11β-HSD1 in adipose tissue. Down-regulation of 11β-HSD1 by increased C/EBPβ-LIP:LAP in adipocytes may be part of a nutrient-sensing mechanism counteracting nutritional stress generated by HF diet
    • …
    corecore