9 research outputs found
Mutual modulation of gut microbiota and the immune system in type 1 diabetes models
Immunological disorders; Metabolic disorders; Molecular biologyTrastorns immunològics; Trastorns metabòlics; Biologia molecularTrastornos inmunológicos; Trastornos metabólicos; Biología MolecularThe transgenic 116C-NOD mouse strain exhibits a prevalent Th17 phenotype, and reduced type 1 diabetes (T1D) compared to non-obese diabetic (NOD) mice. A cohousing experiment between both models revealed lower T1D incidence in NOD mice cohoused with 116C-NOD, associated with gut microbiota changes, reduced intestinal permeability, shifts in T and B cell subsets, and a transition from Th1 to Th17 responses. Distinct gut bacterial signatures were linked to T1D in each group. Using a RAG-2−/− genetic background, we found that T cell alterations promoted segmented filamentous bacteria proliferation in young NOD and 116C-NOD, as well as in immunodeficient NOD.RAG-2−/− and 116C-NOD.RAG-2−/− mice across all ages. Bifidobacterium colonization depended on lymphocytes and thrived in a non-diabetogenic environment. Additionally, 116C-NOD B cells in 116C-NOD.RAG-2−/− mice enriched the gut microbiota in Adlercreutzia and reduced intestinal permeability. Collectively, these results indicate reciprocal modulation between gut microbiota and the immune system in rodent T1D models.This work was supported by the Plan Nacional de I + D + i of the Spanish Ministry of Science and Innovation (PID2019-109302RB-I00), the DiabetesCERO Foundation (Becas Impulso Talento Joven 2022), and CIBER of Diabetes and Associated Metabolic Diseases (CIBERDEM) that is an initiative from Instituto de Salud Carlos III (Spain). E.R.-M. was supported by predoctoral fellowships from the Generalitat de Catalunya (AGAUR FI-DGR, grant number: 2013FI_B 00585), the Spanish Government (FPU, grant number: FPU13/02045) and the IRBLleida. M.C.-P., B.A., and L.E.-M. were supported by UdL and IRBLleida predoctoral fellowships. F. Y. was supported by a predoctoral fellowship from the Chilean Government (ANID, grant number: 72190278). G.S.-G. was supported by a predoctoral fellowship from VHIR
B-Lymphocyte Phenotype Determines T-Lymphocyte Subset Differentiation in Autoimmune Diabetes.
Previous studies indicate that B-lymphocytes play a key role activating diabetogenic T-lymphocytes during the development of autoimmune diabetes. Recently, two transgenic NOD mouse models were generated: the NOD-PerIg and the 116C-NOD mice. In NOD-PerIg mice, B-lymphocytes acquire an activated proliferative phenotype and support accelerated autoimmune diabetes development. In contrast, in 116C-NOD mice, B-lymphocytes display an anergic-like phenotype delaying autoimmune diabetes onset and decreasing disease incidence. The present study further evaluates the T- and B-lymphocyte phenotype in both models. In islet-infiltrating B-lymphocytes (IIBLs) from 116C-NOD mice, the expression of H2-Kd and H2-Ag7 is decreased, whereas that of BAFF, BAFF-R, and TACI is increased. In contrast, IIBLs from NOD-PerIg show an increase in CD86 and FAS expression. In addition, islet-infiltrating T-lymphocytes (IITLs) from NOD-PerIg mice exhibit an increase in PD-1 expression. Moreover, proliferation assays indicate a high capacity of B-lymphocytes from NOD-PerIg mice to secrete high amounts of cytokines and induce T-lymphocyte activation compared to 116C B-lymphocytes. This functional variability between 116C and PerIg B-lymphocytes ultimately results in differences in the ability to shape T-lymphocyte phenotype. These results support the role of B-lymphocytes as key regulators of T-lymphocytes in autoimmune diabetes and provide essential information on the phenotypic characteristics of the T- and B-lymphocytes involved in the autoimmune response in autoimmune diabetes
NOD mouse dorsal root ganglia display morphological and gene expression defects before and during autoimmune diabetes development
IntroductionDuring the development of Autoimmune Diabetes (AD) an autoimmune attack against the Peripheral Nervous System occurs. To gain insight into this topic, analyses of Dorsal Root Ganglia (DRG) from Non-Obese Diabetic (NOD) mice were carried out.MethodsHistopathological analysis by electron and optical microscopy in DRG samples, and mRNA expression analyzes by the microarray technique in DRG and blood leukocyte samples from NOD and C57BL/6 mice were performed.ResultsThe results showed the formation of cytoplasmic vacuoles in DRG cells early in life that could be related to a neurodegenerative process. In view of these results, mRNA expression analyses were conducted to determine the cause and/or the molecules involved in this suspected disorder. The results showed that DRG cells from NOD mice have alterations in the transcription of a wide range of genes, which explain the previously observed alterations. In addition, differences in the transcription genes in white blood cells were also detected.DiscussionTaken together, these results indicate that functional defects are not only seen in beta cells but also in DRG in NOD mice. These results also indicate that these defects are not a consequence of the autoimmune process that takes place in NOD mice and suggest that they may be involved as triggers for its development
Mutual modulation of gut microbiota and the immune system in type 1 diabetes models
Abstract The transgenic 116C-NOD mouse strain exhibits a prevalent Th17 phenotype, and reduced type 1 diabetes (T1D) compared to non-obese diabetic (NOD) mice. A cohousing experiment between both models revealed lower T1D incidence in NOD mice cohoused with 116C-NOD, associated with gut microbiota changes, reduced intestinal permeability, shifts in T and B cell subsets, and a transition from Th1 to Th17 responses. Distinct gut bacterial signatures were linked to T1D in each group. Using a RAG-2−/− genetic background, we found that T cell alterations promoted segmented filamentous bacteria proliferation in young NOD and 116C-NOD, as well as in immunodeficient NOD.RAG-2−/− and 116C-NOD.RAG-2−/− mice across all ages. Bifidobacterium colonization depended on lymphocytes and thrived in a non-diabetogenic environment. Additionally, 116C-NOD B cells in 116C-NOD.RAG-2−/− mice enriched the gut microbiota in Adlercreutzia and reduced intestinal permeability. Collectively, these results indicate reciprocal modulation between gut microbiota and the immune system in rodent T1D models
B-lymphocytes expressing an immunoglobulin specificity recognizing the pancreatic ß-cell autoantigen peripherin are potent contributors to type 1 diabetes development in NOD mice.
While the autoimmune destruction of pancreatic ß-cells underlying type 1 diabetes (1D) development is ultimately mediated by T-cells in NOD mice and also likely humans, B-lymphocytes play an additional key pathogenic role. It appears expression of plasma membrane bound immunoglobulin (Ig) molecules that efficiently capture ß-cell antigens allows autoreactive B-lymphocytes bypassing normal tolerance induction processes to be the subset of antigen presenting cells most efficiently activating diabetogenic T-cells. NOD mice transgenically expressing Ig molecules recognizing antigens that are (insulin) or not (hen egg lysozyme; HEL) expressed by ß-cells have proven useful in dissecting the developmental basis of diabetogenic B-lymphocytes. However, these transgenic Ig specificities were originally selected for their ability to recognize insulin or HEL as foreign, rather than autoantigens. Thus, we generated and characterized NOD mice transgenically expressing an Ig molecule representative of a large proportion of naturally occurring islet-infiltrating B-lymphocytes in NOD mice recognizing the neuronal antigen peripherin. Transgenic peripherin autoreactive B-lymphocytes infiltrate NOD pancreatic islets, acquire an activated proliferative phenotype, and potently support accelerated T1D development. These results support the concept of neuronal autoimmunity as a pathogenic feature of T1D, and targeting such responses could ultimately provide an effective disease intervention approach. Diabetes 2016 Jul; 65:1977-87
A new platform for autoimmune diseases. Inducing tolerance with liposomes encapsulating autoantigens
International audienceAutoimmune diseases (AIDs) are caused by the loss of self-tolerance and destruction of tissues by the host's immune system. Several antigen-specific immunotherapies, focused on arresting the autoimmune attack, have been tested in clinical trials with discouraging results. Therefore, there is a need for innovative strategies to restore self-tolerance safely and definitively in AIDs. We previously demonstrated the therapeutic efficacy of phosphatidylserine (PS)-liposomes encapsulating autoantigens in experimental type 1 diabetes and multiple sclerosis. Here, we show that PS-liposomes can be adapted to other autoimmune diseases by simply replacing the encapsulated autoantigen. After administration, they are distributed to target organs, captured by phagocytes and interact with several immune cells, thus exerting a tolerogenic and immunoregulatory effect. Specific PS-liposomes demonstrate great preventive and therapeutic efficacy in rheumatoid arthritis and myasthenia gravis. Thus, this work highlights the therapeutic potential of a platform for several autoimmunity settings, which is specific, safe, and with long-term effects