52 research outputs found

    A Palatable Hyperlipidic Diet Causes Obesity and Affects Brain Glucose Metabolism in Rats

    Get PDF
    Background We have previously shown that either the continuous intake of a palatable hyperlipidic diet (H) or the alternation of chow (C) and an H diet (CH regimen) induced obesity in rats. Here, we investigated whether the time of the start and duration of these feeding regimens are relevant and whether they affect brain glucose metabolism. Methods Male Wistar rats received C, H, or CH diets during various periods of their life spans: days 30-60, days 30-90, or days 60-90. Experiments were performed the 60th or the 90th day of life. Rats were killed by decapitation. The glucose, insulin, leptin plasma concentration, and lipid content of the carcasses were determined. The brain was sliced and incubated with or without insulin for the analysis of glucose uptake, oxidation, and the conversion of [1-14C]-glucose to lipids. Results The relative carcass lipid content increased in all of the H and CH groups, and the H30-60 and H30-90 groups had the highest levels. Groups H30-60, H30-90, CH30-60, and CH30-90 exhibited a higher serum glucose level. Serum leptin increased in all H groups and in the CH60-90 and CH30-90 groups. Serum insulin was elevated in the H30-60, H60-90, CH60-90, CH30-90 groups. Basal brain glucose consumption and hypothalamic insulin receptor density were lower only in the CH30-60 group. The rate of brain lipogenesis was increased in the H30-90 and CH30-90 groups. Conclusion These findings indicate that both H and CH diet regimens increased body adiposity independent treatment and the age at which treatment was started, whereas these diets caused hyperglycemia and affected brain metabolism when started at an early age

    Effect of fatty Amazon fish consumption on lipid metabolism

    Get PDF
    OBJECTIVE: The present study aimed to evaluate the effect of feeding diets enriched with fatty fish from the Amazon basin on lipid metabolism. METHODS: Male Wistar rats were divided into four groups: control group treated with commercial chow; Mapará group was fed diet enriched with Hypophthalmus edentatus; Matrinxã group was fed diet enriched with Brycon spp.; and, Tambaqui group was fed diet enriched with Colossoma macropomum. Rats with approximately 240g±0.60 of body weight were fed ad libitum for 30 days, and then were sacrificed for collection of whole blood and tissues. RESULTS: The groups treated with enriched diets showed a significant reduction in body mass and lipogenesis in the epididymal and retroperitoneal adipose tissues and carcass when compared with the control group. However, lipogenesis in the liver showed an increase in Matrinxã group compared with the others groups. The levels of serum triglycerides in the treated groups with Amazonian fish were significantly lower than those of the control group. Moreover, total cholesterol concentration only decreased in the group Matrinxã. High Density Lipoprotein cholesterol levels increased significantly in the Mapará and Tambaqui compared with control group and Matrinxã group. The insulin and leptin levels increased significantly in all treatment groups. CONCLUSION: This study demonstrated that diets enriched with fatty fish from the Amazon basin changed the lipid metabolism by reducing serum triglycerides and increasing high density lipoprotein-cholesterol in rats fed with diets enriched with Mapará, Matrinxã, and Tambaqui

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Hepatic glycogen participates in the regulation of hypothalamic pAkt/Akt ratio in high-sugar/high-fat diet-induced obesity

    No full text
    The hypothalamus is a major integrating centre that controls energy homeostasis and plays a major role in hepatic glycogen (HGlyc) turnover. Not only do hypothalamic and hepatic Akt levels influence glucose homeostasis and glycogen synthesis, but exposure to high-sugar/high-fat diets (HSHF) can also lead to hypothalamic inflammation and HGlyc accumulation. HSHF withdrawal overall restores energy and glucose homeostasis, but the actual relationship between hypothalamic inflammation and HGlyc after short-term HSHF withdrawal has not yet been fully elucidated. Here we investigated the short-term effects of HSHF withdrawal preceded by a 30-day HSHF intake on the liver-hypothalamus crosstalk and glucose homeostasis. Sixty-day old male Wistar rats were fed for 30 days a control chow (n = 10) (Ct), or an HSHF diet (n = 20). On the 30th day of dietary intervention, a random HSHF subset (n = 10) had their diets switched to control chow for 48 h (Hw) whilst the remaining HSHF rats remained in the HSHF diet (n = 10) (Hd). All rats were anaesthetized and euthanized at the end of the protocol. We quantified HGlyc, Akt phosphorylation, inflammation and glucose homeostasis biomarkers. We also assessed the effect of propensity to obesity on those biomarkers, as detailed previously. Hd rats showed impaired glucose homeostasis, higher HGlyc and hypothalamic inflammation, and lower pAkt/Akt. Increased HGlyc was significantly associated with HSHF intake on pAkt/Akt lowered levels. We also found that HGlyc breakdown may have prevented a further pAkt/Akt drop after HSHF withdrawal. Propensity to obesity showed no apparent effect on hypothalamic inflammation or glucose homeostasis. Our findings suggest a comprehensive role of HGlyc as a structural and functional modulator of energy metabolism, and such roles may come into play relatively rapidly

    Mechanistic insights into the CO<sub>2</sub> capture and reduction on K-promoted Cu/Al<sub>2</sub>O<sub>3</sub> by spatiotemporal operando methodologies

    No full text
    Integrated CO2 capture and conversion processes bring the promise of drastic abatement of CO2 emission together with its valorisation to chemical building blocks such as CH4 and CO. Isothermal CO2 capture and reduction (CCR) on a K-promoted Cu/Al2O3 was recognised as an effective catalytic strategy for removing CO2 from diluted stream and converting it to syngas (H2 + CO) employing green H2 as reducing agent. The dual functionality of the catalyst is the key of this dynamic process, in which the alkaline metal introduces the capture functionality and copper ensures the selective conversion of the captured CO2 to CO. However, the highly dynamic state of the catalyst at reaction conditions represents a barrier for the identification of the catalytic mechanism of CCR, which is vital for rational process improvement and design. In this work, we conducted a mechanistic investigation of CCR by means of spatiotemporal operando methodologies, gaining insights into dynamic variation of temperature, gas concentration and reactive surface species in the CCR reactor. The results show the unique potassium state exothermically captures CO2 as surface carbonates which can be reduced to CO rapidly under H2 atmosphere. When the surface carbonates are transformed to formates the reaction path is altered and the reduction to CO becomes slower. By designing controlled catalytic experiments, we further demonstrate the active involvement of CO in the capture mechanism and the effectiveness of CO2 capture in presence of an oxidised surface, extending the perspectives and suitability of CCR to treat actual complex effluent streams.ChemE/Catalysis Engineerin
    corecore