64 research outputs found
A Palatable Hyperlipidic Diet Causes Obesity and Affects Brain Glucose Metabolism in Rats
Background
We have previously shown that either the continuous intake of a palatable hyperlipidic diet (H) or the alternation of chow (C) and an H diet (CH regimen) induced obesity in rats. Here, we investigated whether the time of the start and duration of these feeding regimens are relevant and whether they affect brain glucose metabolism.
Methods
Male Wistar rats received C, H, or CH diets during various periods of their life spans: days 30-60, days 30-90, or days 60-90. Experiments were performed the 60th or the 90th day of life. Rats were killed by decapitation. The glucose, insulin, leptin plasma concentration, and lipid content of the carcasses were determined. The brain was sliced and incubated with or without insulin for the analysis of glucose uptake, oxidation, and the conversion of [1-14C]-glucose to lipids.
Results
The relative carcass lipid content increased in all of the H and CH groups, and the H30-60 and H30-90 groups had the highest levels. Groups H30-60, H30-90, CH30-60, and CH30-90 exhibited a higher serum glucose level. Serum leptin increased in all H groups and in the CH60-90 and CH30-90 groups. Serum insulin was elevated in the H30-60, H60-90, CH60-90, CH30-90 groups. Basal brain glucose consumption and hypothalamic insulin receptor density were lower only in the CH30-60 group. The rate of brain lipogenesis was increased in the H30-90 and CH30-90 groups.
Conclusion
These findings indicate that both H and CH diet regimens increased body adiposity independent treatment and the age at which treatment was started, whereas these diets caused hyperglycemia and affected brain metabolism when started at an early age
Routing of Kv7.1 to endoplasmic reticulum plasma membrane junctions
AIM: The voltage-gated Kv7.1 channel, in association with the regulatory subunit KCNE1, contributes to the I(Ks) current in the heart. However, both proteins travel to the plasma membrane using different routes. While KCNE1 follows a classical Golgi-mediated anterograde pathway, Kv7.1 is located in endoplasmic reticulum-plasma membrane junctions (ER-PMjs), where it associates with KCNE1 before being delivered to the plasma membrane. METHODS: To characterize the channel routing to these spots we used a wide repertoire of methodologies, such as protein expression analysis (i.e. protein association and biotin labeling), confocal (i.e. immunocytochemistry, FRET, and FRAP), and dSTORM microscopy, transmission electron microscopy, proteomics, and electrophysiology. RESULTS: We demonstrated that Kv7.1 targeted ER-PMjs regardless of the origin or architecture of these structures. Kv2.1, a neuronal channel that also contributes to a cardiac action potential, and JPHs, involved in cardiac dyads, increased the number of ER-PMjs in nonexcitable cells, driving and increasing the level of Kv7.1 at the cell surface. Both ER-PMj inducers influenced channel function and dynamics, suggesting that different protein structures are formed. Although exhibiting no physical interaction, Kv7.1 resided in more condensed clusters (ring-shaped) with Kv2.1 than with JPH4. Moreover, we found that VAMPs and AMIGO, which are Kv2.1 ancillary proteins also associated with Kv7.1. Specially, VAP B, showed higher interaction with the channel when ER-PMjs were stimulated by Kv2.1. CONCLUSION: Our results indicated that Kv7.1 may bind to different structures of ER-PMjs that are induced by different mechanisms. This variable architecture can differentially affect the fate of cardiac Kv7.1 channels
Effect of fatty Amazon fish consumption on lipid metabolism
OBJECTIVE: The present study aimed to evaluate the effect of feeding diets enriched with fatty fish from the Amazon basin on lipid metabolism. METHODS: Male Wistar rats were divided into four groups: control group treated with commercial chow; Mapará group was fed diet enriched with Hypophthalmus edentatus; Matrinxã group was fed diet enriched with Brycon spp.; and, Tambaqui group was fed diet enriched with Colossoma macropomum. Rats with approximately 240g±0.60 of body weight were fed ad libitum for 30 days, and then were sacrificed for collection of whole blood and tissues. RESULTS: The groups treated with enriched diets showed a significant reduction in body mass and lipogenesis in the epididymal and retroperitoneal adipose tissues and carcass when compared with the control group. However, lipogenesis in the liver showed an increase in Matrinxã group compared with the others groups. The levels of serum triglycerides in the treated groups with Amazonian fish were significantly lower than those of the control group. Moreover, total cholesterol concentration only decreased in the group Matrinxã. High Density Lipoprotein cholesterol levels increased significantly in the Mapará and Tambaqui compared with control group and Matrinxã group. The insulin and leptin levels increased significantly in all treatment groups. CONCLUSION: This study demonstrated that diets enriched with fatty fish from the Amazon basin changed the lipid metabolism by reducing serum triglycerides and increasing high density lipoprotein-cholesterol in rats fed with diets enriched with Mapará, Matrinxã, and Tambaqui
Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries
Background
Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres.
Methods
This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries.
Results
In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia.
Conclusion
This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
- …