43 research outputs found

    Atomic-scale coexistence of short-range magnetic order and superconductivity in Fe1+y_{1+y}Se0.1_{0.1}Te0.9_{0.9}

    Get PDF
    The ground state of the parent compounds of many high temperature superconductors is an antiferromagnetically (AFM) ordered phase, where superconductivity emerges when the AFM phase transition is suppressed by doping or application of pressure. This behaviour implies a close relation between the two orders. Understanding the interplay between them promises a better understanding of how the superconducting condensate forms from the AFM ordered background. Here we explore this relation in real space at the atomic scale using low temperature spin-polarized scanning tunneling microscopy (SP-STM) and spectroscopy. We investigate the transition from antiferromagnetically ordered Fe1+yTe\mathrm{Fe}_{1+y}\mathrm{Te} via the spin glass phase in Fe1+ySe0.1Te0.9\mathrm{Fe}_{1+y}\mathrm{Se}_{0.1}\mathrm{Te}_{0.9} to superconducting Fe1+ySe0.15Te0.85\mathrm{Fe}_{1+y}\mathrm{Se}_{0.15}\mathrm{Te}_{0.85}. In Fe1+ySe0.1Te0.9\mathrm{Fe}_{1+y}\mathrm{Se}_{0.1}\mathrm{Te}_{0.9} we observe an atomic-scale coexistence of superconductivity and short-ranged bicollinear antiferromagnetic order.Comment: 7 pages, 6 figure

    Autoparametric resonance extending the bit-flip time of a cat qubit up to 0.3 s

    Full text link
    Cat qubits, for which logical ∣0⟩|0\rangle and ∣1⟩|1\rangle are coherent states âˆŁÂ±Î±âŸ©|\pm\alpha\rangle of a harmonic mode, offer a promising route towards quantum error correction. Using dissipation to our advantage so that photon pairs of the harmonic mode are exchanged with single photons of its environment, it is possible to stabilize the logical states and exponentially increase the bit-flip time of the cat qubit with the photon number ∣α∣2|\alpha|^2. Large two-photon dissipation rate Îș2\kappa_2 ensures fast qubit manipulation and short error correction cycles, which are instrumental to correct the remaining phase-flip errors in a repetition code of cat qubits. Here we introduce and operate an autoparametric superconducting circuit that couples a mode containing the cat qubit to a lossy mode whose frequency is set at twice that of the cat mode. This passive coupling does not require a parametric pump and reaches a rate Îș2/2π≈2 MHz\kappa_2/2\pi\approx 2~\mathrm{MHz}. With such a strong two-photon dissipation, bit-flip errors of the autoparametric cat qubit are prevented for a characteristic time up to 0.3 s with only a mild impact on phase-flip errors. Besides, we illustrate how the phase of a quantum superposition between âˆŁÎ±âŸ©|\alpha\rangle and âˆŁâˆ’Î±âŸ©|-\alpha\rangle can be arbitrarily changed by driving the harmonic mode while keeping the engineered dissipation active

    Stochastic and resolvable gravitational waves from ultralight bosons

    Get PDF
    Ultralight scalar fields around spinning black holes can trigger superradiant instabilities, forming a long-lived bosonic condensate outside the horizon. We use numerical solutions of the perturbed field equations and astrophysical models of massive and stellar-mass black hole populations to compute, for the first time, the stochastic gravitational-wave background from these sources. In optimistic scenarios the background is observable by Advanced LIGO and LISA for field masses ms in the range 3c[2 710-13,10-12] and 3c5 7[10-19,10-16] eV, respectively, and it can affect the detectability of resolvable sources. Our estimates suggest that an analysis of the stochastic background limits from LIGO O1 might already be used to marginally exclude axions with mass 3c10-12.5 eV. Semicoherent searches with Advanced LIGO (LISA) should detect 3c15(5) to 200(40) resolvable sources for scalar field masses 3 710-13 (10-17) eV. LISA measurements of massive BH spins could either rule out bosons in the range 3c[10-18,2 710-13] eV, or measure ms with 10% accuracy in the range 3c[10-17,10-13] eV

    Atomic-scale coexistence of short-range magnetic order and superconductivity in Fe1+ySe0.1Te0.9

    Get PDF
    Funding: UK EPSRC (EP/I031014/1) (HZ, J-PR, and PW)The ground state of the parent compounds of many high-temperature superconductors is an antiferromagnetically ordered phase, where superconductivity emerges when the antiferromagnetic phase transition is suppressed by doping or application of pressure. This behavior implies a close relation between the two orders. Examining the interplay between them promises a better understanding of how the superconducting condensate forms from the antiferromagnetically ordered background. Here we explore this relation in real space at the atomic scale using low-temperature spin-polarized scanning tunneling microscopy and spectroscopy. We investigate the transition from antiferromagnetically ordered Fe1+yTe via the spin-glass phase in Fe1+ySe0.1Te0.9 to superconducting Fe1+ySe0.15Te0.85. In Fe1+ySe0.1Te0.9 we observe an atomic-scale coexistence of superconductivity and short-ranged bicollinear antiferromagnetic order. However, a direct correlation between the two orders is not observed, supporting the scenario of s± superconducting symmetry in this material. Our work demonstrates a direct probe of the relation between the two orders, which is indispensable for our understanding of high-temperature superconductivity.Publisher PDFPeer reviewe

    Compteur de photon basé sur une mesure dispersive multiplexée

    No full text
    Lorsque l’on utilise un bit quantique (qubit) pour sonder l’état d’un systĂšme, la stratĂ©gie habituelle consiste Ă  poser une sĂ©rie de questions binaires, chaque question amĂ©liorant notre connaissance de l’état du systĂšme. Cependant, cette stratĂ©gie nĂ©cessite de longs temps de mesure lorsque l’on considĂšre un grand systĂšme, comme par exemple un rĂ©sonateur Ă©lectromagnĂ©tique peuplĂ© d’un grand nombre de photons, car chaque question ne peut extraire qu’un bit d’information. Dans cette thĂšse, nous proposons une nouvelle stratĂ©gie qui permet d’obtenir un temps de mesure indĂ©pendant de la taille du systĂšme. Cette nouvelle approche est basĂ©e sur l’utilisation d’un qubit comme routeur, ce qui permet d’encoder l’information sur l’état du systĂšme dans les nombreux modes d’une ligne de transmission.Dans le cas d’un dĂ©tecteur idĂ©al, nous montrons Ă  l’aide d’une expĂ©rience de pensĂ©e que cette stratĂ©gie permet de mesurer le nombre de photons contenu dans une cavitĂ© en un temps constant, indĂ©pendant de la taille du systĂšme. Pour dĂ©montrer la faisabilitĂ© de cette mesure idĂ©ale, nous appliquons cette stratĂ©gie Ă  la mesure du nombre de photons contenu dans un rĂ©sonateur micro-onde couplĂ© dispersivement Ă  un qubit supraconducteur. Dans un premier temps, la fluorescence du qubit est mesurĂ©e lorsque ce dernier est sondĂ© Ă  l’aide d’un ton micro-onde monochromatique. L’action en retour de cette mesure dispersive est Ă©tudiĂ©e, nous dĂ©montrons Ă  travers la post-sĂ©lection que la fluorescence du qubit encode effectivement le nombre de photons contenu dans le rĂ©sonateur. Nous mesurons le taux de dĂ©phasage induit par la mesure entre deux Ă©tats de Fock du rĂ©sonateur et le comparons Ă  un modĂšle thĂ©orique. Ce dernier nous permet alors d’étudier le comportement non-linĂ©aire du taux de dĂ©phasage induit par la mesure avec l’amplitude du ton micro-onde.Dans un deuxiĂšme temps, la fluorescence du qubit est sondĂ©e Ă  l’aide d’un peigne de frĂ©quence. Des mesures hĂ©tĂ©rodynes multiplexĂ©es Ă  tous les tons du peigne de frĂ©quence nous permettent alors de mesurer le nombre de photons contenus dans le rĂ©sonateur. Cette mesure multiplexĂ©e est rendue possible grĂące aux rĂ©centes amĂ©liorations sur la bande passante des amplificateurs limitĂ©s quantiquement. Le temps de vie du rĂ©sonateur et une efficacitĂ© de mesure limitĂ©s nous empĂȘchent d'atteindre un rapport signal sur bruit permettant de dĂ©coder toute l'information contenue dans notre mesure hĂ©tĂ©rodyne multiplexĂ©e. Cependant, contrairement Ă  une mesure sĂ©quentielle, notre approche fournit en parallĂšle une information partielle sur la population de chaque Ă©tat de Fock. L’action en retour de cette mesure dispersive multiplexĂ©e est Ă©tudiĂ©e Ă  l’aide de tomographies de Wigner du rĂ©sonateur. Nous sommes ainsi capables de mesurer le taux de dĂ©phasage induit pas la mesure multiplexĂ©e et mettons en Ă©vidence une amplitude optimale du peigne de frĂ©quence qui maximise le taux de dĂ©phasage. Un modĂšle thĂ©orique basĂ© sur l’approximation que le peigne de frĂ©quence est infini nous permet de prĂ©dire l’amplitude optimale du peigne, et ce en accord avec l’expĂ©rience.When a two-level system – a qubit – is used to probe a larger system, it naturally leads to answering a single yes-no question about the system state. Identifying what is the state of a system thus comes down to ask a series of binary questions iteratively to refine our knowledge. However, this approach leads to long measurement times for large systems, such as a resonator containing a large number of photons. In this thesis, we propose a new approach which enables us to make a measurement in a time, which is independent of the system size. This new measurement uses the qubit as an encoder of information about the system state into the many propagating modes of a transmission line. Assuming an ideal detector, we show that photon counting can then be implemented in a fixed time whatever the number of photons. We demonstrate the practicality of this approach by counting the number of photons in a microwave resonator coupled dispersively to a single superconducting qubit. We observe the qubit fluorescence dependence on the resonator photon number when the qubit is driven by a microwave monochromatic tone. Using the backaction of this dispersive measurement and post-selection, we evidence the photon counting ability of the measurement. The dephasing rate between two Fock states induced by the photon number measurement is measured and compared to theory. The latter allows us the study the non-linear dependence of the dephasing rate on the microwave drive amplitude.In a second time, the qubit fluorescence is probed using a frequency comb. Multiplexed heterodyne detections are simultaneously performed at each comb frequency and allow us to measure the photon number in the microwave resonator. This multiplexed measurement benefits from the recent bandwidth improvements of near quantum limited amplifiers. The limited cavity lifetime and detector efficiency prevented us from reaching single shot readout of the photon number in this proof-of-principle experiment. However, unlike in sequential measurement schemes, a single run of our experiment does provide, in parallel, partial information about the occupancy of each Fock state. Besides, we manage to observe the multiplexed measurement backaction on the resonator using direct Wigner tomography, which allowed us to measure the decoherence rate of the resonator induced by the measurement. We evidence an optimal qubit drive amplitude for information extraction, which matches the expected dynamics of a qubit under a multifrequency drive

    Photon counting with a multiplexed dispersive readout

    No full text
    When a two-level system – a qubit – is used to probe a larger system, it naturally leads to answering a single yes-no question about the system state. Identifying what is the state of a system thus comes down to ask a series of binary questions iteratively to refine our knowledge. However, this approach leads to long measurement times for large systems, such as a resonator containing a large number of photons. In this thesis, we propose a new approach which enables us to make a measurement in a time, which is independent of the system size. This new measurement uses the qubit as an encoder of information about the system state into the many propagating modes of a transmission line. Assuming an ideal detector, we show that photon counting can then be implemented in a fixed time whatever the number of photons. We demonstrate the practicality of this approach by counting the number of photons in a microwave resonator coupled dispersively to a single superconducting qubit. We observe the qubit fluorescence dependence on the resonator photon number when the qubit is driven by a microwave monochromatic tone. Using the backaction of this dispersive measurement and post-selection, we evidence the photon counting ability of the measurement. The dephasing rate between two Fock states induced by the photon number measurement is measured and compared to theory. The latter allows us the study the non-linear dependence of the dephasing rate on the microwave drive amplitude.In a second time, the qubit fluorescence is probed using a frequency comb. Multiplexed heterodyne detections are simultaneously performed at each comb frequency and allow us to measure the photon number in the microwave resonator. This multiplexed measurement benefits from the recent bandwidth improvements of near quantum limited amplifiers. The limited cavity lifetime and detector efficiency prevented us from reaching single shot readout of the photon number in this proof-of-principle experiment. However, unlike in sequential measurement schemes, a single run of our experiment does provide, in parallel, partial information about the occupancy of each Fock state. Besides, we manage to observe the multiplexed measurement backaction on the resonator using direct Wigner tomography, which allowed us to measure the decoherence rate of the resonator induced by the measurement. We evidence an optimal qubit drive amplitude for information extraction, which matches the expected dynamics of a qubit under a multifrequency drive.Lorsque l’on utilise un bit quantique (qubit) pour sonder l’état d’un systĂšme, la stratĂ©gie habituelle consiste Ă  poser une sĂ©rie de questions binaires, chaque question amĂ©liorant notre connaissance de l’état du systĂšme. Cependant, cette stratĂ©gie nĂ©cessite de longs temps de mesure lorsque l’on considĂšre un grand systĂšme, comme par exemple un rĂ©sonateur Ă©lectromagnĂ©tique peuplĂ© d’un grand nombre de photons, car chaque question ne peut extraire qu’un bit d’information. Dans cette thĂšse, nous proposons une nouvelle stratĂ©gie qui permet d’obtenir un temps de mesure indĂ©pendant de la taille du systĂšme. Cette nouvelle approche est basĂ©e sur l’utilisation d’un qubit comme routeur, ce qui permet d’encoder l’information sur l’état du systĂšme dans les nombreux modes d’une ligne de transmission.Dans le cas d’un dĂ©tecteur idĂ©al, nous montrons Ă  l’aide d’une expĂ©rience de pensĂ©e que cette stratĂ©gie permet de mesurer le nombre de photons contenu dans une cavitĂ© en un temps constant, indĂ©pendant de la taille du systĂšme. Pour dĂ©montrer la faisabilitĂ© de cette mesure idĂ©ale, nous appliquons cette stratĂ©gie Ă  la mesure du nombre de photons contenu dans un rĂ©sonateur micro-onde couplĂ© dispersivement Ă  un qubit supraconducteur. Dans un premier temps, la fluorescence du qubit est mesurĂ©e lorsque ce dernier est sondĂ© Ă  l’aide d’un ton micro-onde monochromatique. L’action en retour de cette mesure dispersive est Ă©tudiĂ©e, nous dĂ©montrons Ă  travers la post-sĂ©lection que la fluorescence du qubit encode effectivement le nombre de photons contenu dans le rĂ©sonateur. Nous mesurons le taux de dĂ©phasage induit par la mesure entre deux Ă©tats de Fock du rĂ©sonateur et le comparons Ă  un modĂšle thĂ©orique. Ce dernier nous permet alors d’étudier le comportement non-linĂ©aire du taux de dĂ©phasage induit par la mesure avec l’amplitude du ton micro-onde.Dans un deuxiĂšme temps, la fluorescence du qubit est sondĂ©e Ă  l’aide d’un peigne de frĂ©quence. Des mesures hĂ©tĂ©rodynes multiplexĂ©es Ă  tous les tons du peigne de frĂ©quence nous permettent alors de mesurer le nombre de photons contenus dans le rĂ©sonateur. Cette mesure multiplexĂ©e est rendue possible grĂące aux rĂ©centes amĂ©liorations sur la bande passante des amplificateurs limitĂ©s quantiquement. Le temps de vie du rĂ©sonateur et une efficacitĂ© de mesure limitĂ©s nous empĂȘchent d'atteindre un rapport signal sur bruit permettant de dĂ©coder toute l'information contenue dans notre mesure hĂ©tĂ©rodyne multiplexĂ©e. Cependant, contrairement Ă  une mesure sĂ©quentielle, notre approche fournit en parallĂšle une information partielle sur la population de chaque Ă©tat de Fock. L’action en retour de cette mesure dispersive multiplexĂ©e est Ă©tudiĂ©e Ă  l’aide de tomographies de Wigner du rĂ©sonateur. Nous sommes ainsi capables de mesurer le taux de dĂ©phasage induit pas la mesure multiplexĂ©e et mettons en Ă©vidence une amplitude optimale du peigne de frĂ©quence qui maximise le taux de dĂ©phasage. Un modĂšle thĂ©orique basĂ© sur l’approximation que le peigne de frĂ©quence est infini nous permet de prĂ©dire l’amplitude optimale du peigne, et ce en accord avec l’expĂ©rience

    Photon counting with a multiplexed dispersive readout

    No full text
    When a two-level system – a qubit – is used to probe a larger system, it naturally leads to answering a single yes-no question about the system state. Identifying what is the state of a system thus comes down to ask a series of binary questions iteratively to refine our knowledge. However, this approach leads to long measurement times for large systems, such as a resonator containing a large number of photons. In this thesis, we propose a new approach which enables us to make a measurement in a time, which is independent of the system size. This new measurement uses the qubit as an encoder of information about the system state into the many propagating modes of a transmission line. Assuming an ideal detector, we show that photon counting can then be implemented in a fixed time whatever the number of photons. We demonstrate the practicality of this approach by counting the number of photons in a microwave resonator coupled dispersively to a single superconducting qubit. We observe the qubit fluorescence dependence on the resonator photon number when the qubit is driven by a microwave monochromatic tone. Using the backaction of this dispersive measurement and post-selection, we evidence the photon counting ability of the measurement. The dephasing rate between two Fock states induced by the photon number measurement is measured and compared to theory. The latter allows us the study the non-linear dependence of the dephasing rate on the microwave drive amplitude.In a second time, the qubit fluorescence is probed using a frequency comb. Multiplexed heterodyne detections are simultaneously performed at each comb frequency and allow us to measure the photon number in the microwave resonator. This multiplexed measurement benefits from the recent bandwidth improvements of near quantum limited amplifiers. The limited cavity lifetime and detector efficiency prevented us from reaching single shot readout of the photon number in this proof-of-principle experiment. However, unlike in sequential measurement schemes, a single run of our experiment does provide, in parallel, partial information about the occupancy of each Fock state. Besides, we manage to observe the multiplexed measurement backaction on the resonator using direct Wigner tomography, which allowed us to measure the decoherence rate of the resonator induced by the measurement. We evidence an optimal qubit drive amplitude for information extraction, which matches the expected dynamics of a qubit under a multifrequency drive.Lorsque l’on utilise un bit quantique (qubit) pour sonder l’état d’un systĂšme, la stratĂ©gie habituelle consiste Ă  poser une sĂ©rie de questions binaires, chaque question amĂ©liorant notre connaissance de l’état du systĂšme. Cependant, cette stratĂ©gie nĂ©cessite de longs temps de mesure lorsque l’on considĂšre un grand systĂšme, comme par exemple un rĂ©sonateur Ă©lectromagnĂ©tique peuplĂ© d’un grand nombre de photons, car chaque question ne peut extraire qu’un bit d’information. Dans cette thĂšse, nous proposons une nouvelle stratĂ©gie qui permet d’obtenir un temps de mesure indĂ©pendant de la taille du systĂšme. Cette nouvelle approche est basĂ©e sur l’utilisation d’un qubit comme routeur, ce qui permet d’encoder l’information sur l’état du systĂšme dans les nombreux modes d’une ligne de transmission.Dans le cas d’un dĂ©tecteur idĂ©al, nous montrons Ă  l’aide d’une expĂ©rience de pensĂ©e que cette stratĂ©gie permet de mesurer le nombre de photons contenu dans une cavitĂ© en un temps constant, indĂ©pendant de la taille du systĂšme. Pour dĂ©montrer la faisabilitĂ© de cette mesure idĂ©ale, nous appliquons cette stratĂ©gie Ă  la mesure du nombre de photons contenu dans un rĂ©sonateur micro-onde couplĂ© dispersivement Ă  un qubit supraconducteur. Dans un premier temps, la fluorescence du qubit est mesurĂ©e lorsque ce dernier est sondĂ© Ă  l’aide d’un ton micro-onde monochromatique. L’action en retour de cette mesure dispersive est Ă©tudiĂ©e, nous dĂ©montrons Ă  travers la post-sĂ©lection que la fluorescence du qubit encode effectivement le nombre de photons contenu dans le rĂ©sonateur. Nous mesurons le taux de dĂ©phasage induit par la mesure entre deux Ă©tats de Fock du rĂ©sonateur et le comparons Ă  un modĂšle thĂ©orique. Ce dernier nous permet alors d’étudier le comportement non-linĂ©aire du taux de dĂ©phasage induit par la mesure avec l’amplitude du ton micro-onde.Dans un deuxiĂšme temps, la fluorescence du qubit est sondĂ©e Ă  l’aide d’un peigne de frĂ©quence. Des mesures hĂ©tĂ©rodynes multiplexĂ©es Ă  tous les tons du peigne de frĂ©quence nous permettent alors de mesurer le nombre de photons contenus dans le rĂ©sonateur. Cette mesure multiplexĂ©e est rendue possible grĂące aux rĂ©centes amĂ©liorations sur la bande passante des amplificateurs limitĂ©s quantiquement. Le temps de vie du rĂ©sonateur et une efficacitĂ© de mesure limitĂ©s nous empĂȘchent d'atteindre un rapport signal sur bruit permettant de dĂ©coder toute l'information contenue dans notre mesure hĂ©tĂ©rodyne multiplexĂ©e. Cependant, contrairement Ă  une mesure sĂ©quentielle, notre approche fournit en parallĂšle une information partielle sur la population de chaque Ă©tat de Fock. L’action en retour de cette mesure dispersive multiplexĂ©e est Ă©tudiĂ©e Ă  l’aide de tomographies de Wigner du rĂ©sonateur. Nous sommes ainsi capables de mesurer le taux de dĂ©phasage induit pas la mesure multiplexĂ©e et mettons en Ă©vidence une amplitude optimale du peigne de frĂ©quence qui maximise le taux de dĂ©phasage. Un modĂšle thĂ©orique basĂ© sur l’approximation que le peigne de frĂ©quence est infini nous permet de prĂ©dire l’amplitude optimale du peigne, et ce en accord avec l’expĂ©rience

    Deep Reinforcement Learning for Quantum State Preparation with Weak Nonlinear Measurements

    Get PDF
    International audienceQuantum control has been of increasing interest in recent years, e.g. for tasks like state initialization and stabilization. Feedback-based strategies are particularly powerful, but also hard to find, due to the exponentially increased search space. Deep reinforcement learning holds great promise in this regard. It may provide new answers to difficult questions, such as whether nonlinear measurements can compensate for linear, constrained control. Here we show that reinforcement learning can successfully discover such feedback strategies, without prior knowledge. We illustrate this for state preparation in a cavity subject to quantum-non-demolition detection of photon number, with a simple linear drive as control. Fock states can be produced and stabilized at very high fidelity. It is even possible to reach superposition states, provided the measurement rates for different Fock states can be controlled as well
    corecore