16 research outputs found

    Zoonoses under our noses.

    Get PDF
    One Health is an effective approach for the management of zoonotic disease in humans, animals and environments. Examples of the management of bacterial zoonoses in Europe and across the globe demonstrate that One Health approaches of international surveillance, information-sharing and appropriate intervention methods are required to successfully prevent and control disease outbreaks in both endemic and non-endemic regions. Additionally, a One Health approach enables effective preparation and response to bioterrorism threats

    抗精神病薬によるジストニアの発現機序に関する実験的研究 σ (sigma) sites の関与について

    Get PDF
    Published ErratumBurkholderia pseudomallei (Bp) is the causative agent of the infectious disease melioidosis. To investigate population diversity, recombination, and horizontal gene transfer in closely related Bp isolates, we performed whole-genome sequencing (WGS) on 106 clinical, animal, and environmental strains from a restricted Asian locale. Whole-genome phylogenies resolved multiple genomic clades of Bp, largely congruent with multilocus sequence typing (MLST). We discovered widespread recombination in the Bp core genome, involving hundreds of regions associated with multiple haplotypes. Highly recombinant regions exhibited functional enrichments that may contribute to virulence. We observed clade-specific patterns of recombination and accessory gene exchange, and provide evidence that this is likely due to ongoing recombination between clade members. Reciprocally, interclade exchanges were rarely observed, suggesting mechanisms restricting gene flow between clades. Interrogation of accessory elements revealed that each clade harbored a distinct complement of restriction-modification (RM) systems, predicted to cause clade-specific patterns of DNA methylation. Using methylome sequencing, we confirmed that representative strains from separate clades indeed exhibit distinct methylation profiles. Finally, using an E. coli system, we demonstrate that Bp RM systems can inhibit uptake of non-self DNA. Our data suggest that RM systems borne on mobile elements, besides preventing foreign DNA invasion, may also contribute to limiting exchanges of genetic material between individuals of the same species. Genomic clades may thus represent functional units of genetic isolation in Bp, modulating intraspecies genetic diversity.Wellcome Trus

    Evaluation of the VP22 protein for enhancement of a DNA vaccine against anthrax

    Get PDF
    Background: Previously, antigens expressed from DNA vaccines have been fused to the VP22 protein from Herpes Simplex Virus type I in order to improve efficacy. However, the immune enhancing mechanism of VP22 is poorly understood and initial suggestions that VP22 can mediate intercellular spread have been questioned. Despite this, fusion of VP22 to antigens expressed from DNA vaccines has improved immune responses, particularly to non-secreted antigens.Methods: In this study, we fused the gene for the VP22 protein to the gene for Protective Antigen (PA) from Bacillus anthracis, the causative agent of anthrax. Protective immunity against infection with B. anthracis is almost entirely based on a response to PA and we have generated two constructs, where VP22 is fused to either the N- or the C-terminus of the 63 kDa protease-cleaved fragment of PA (PA63).Results: Following gene gun immunisation of A/J mice with these constructs, we observed no improvement in the anti-PA antibody response generated. Following an intraperitoneal challenge with 70 50% lethal doses of B. anthracis strain STI spores, no difference in protection was evident in groups immunised with the DNA vaccine expressing PA63 and the DNA vaccines expressing fusion proteins of PA63 with VP22.Conclusion: VP22 fusion does not improve the protection of A/J mice against live spore challenge following immunisation of DNA vaccines expressing PA63

    From "crisis to recovery": A complete insight into the mechanisms of chlorine injury in the lung.

    No full text
    Chlorine (Cl2) gas is a toxic industrial chemical (TIC) that poses a hazard to human health following accidental and/or intentional (e.g. terrorist) release. By using a murine model of sub-lethal Cl2 exposure we have examined the airway hyper responsiveness, cellular infiltrates, transcriptomic and proteomic responses of the lung. In the "crisis" phase at 2 h and 6 h there is a significant decreases in leukocytes within bronchoalveolar lavage fluid accompanied by an upregulation within the proteome of immune pathways ultimately resulting in neutrophil influx at 24 h. A flip towards "repair" in the transcriptome and proteome occurs at 24 h, neutrophil influx and an associated drop in the lung function persisting until 14 d post-exposure and subsequent "recovery" after 28 days. Collectively, this research provides new insights into the mechanisms of damage, early global responses and processes of repair induced in the lung following the inhalation of Cl2

    A Type IV Pilin, PilA, Contributes to Adherence of Burkholderia pseudomallei and Virulence In Vivo

    No full text
    The Burkholderia pseudomallei K96243 genome contains multiple type IV pilin-associated loci, including one encoding a putative pilus structural protein (pilA). A pilA deletion mutant has reduced adherence to human epithelial cells and is less virulent in the nematode model of virulence and the murine model of melioidosis, suggesting a role for type IV pili in B. pseudomallei virulence

    A New Micromonospora Strain with Antibiotic Activity Isolated from the Microbiome of a Mid-Atlantic Deep-Sea Sponge

    No full text
    To tackle the growing problem of antibiotic resistance, it is essential to identify new bioactive compounds that are effective against resistant microbes and safe to use. Natural products and their derivatives are, and will continue to be, an important source of these molecules. Sea sponges harbour a diverse microbiome that co-exists with the sponge, and these bacterial communities produce a rich array of bioactive metabolites for protection and resource competition. For these reasons, the sponge microbiota constitutes a potential source of clinically relevant natural products. To date, efforts in bioprospecting for these compounds have focused predominantly on sponge specimens isolated from shallow water, with much still to be learned about samples from the deep sea. Here we report the isolation of a new Micromonospora strain, designated 28ISP2-46T, recovered from the microbiome of a mid-Atlantic deep-sea sponge. Whole-genome sequencing reveals the capacity of this bacterium to produce a diverse array of natural products, including kosinostatin and isoquinocycline B, which exhibit both antibiotic and antitumour properties. Both compounds were isolated from 28ISP2-46T fermentation broths and were found to be effective against a plethora of multidrug-resistant clinical isolates. This study suggests that the marine production of isoquinocyclines may be more widespread than previously supposed and demonstrates the value of targeting the deep-sea sponge microbiome as a source of novel microbial life with exploitable biosynthetic potential
    corecore