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Abstract 14 

One Health is an effective approach for the management of zoonotic disease in humans, 15 

animals and environments. Examples of the management of bacterial zoonoses in Europe 16 

and across the globe demonstrate that One Health approaches of international surveillance, 17 

information-sharing and appropriate intervention methods are required to successfully 18 

prevent and control disease outbreaks in both endemic and non-endemic regions. 19 

Additionally, a One Health approach enables effective preparation and response to 20 

bioterrorism threats.   21 
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1111 IIIINTRODUCTIONNTRODUCTIONNTRODUCTIONNTRODUCTION    23 

Six in ten human cases of infectious disease arise from animal transmission [1]. These so-24 

called “zoonotic” pathogens, transmitted to humans from animals, are found globally. 25 

Wherever humans live, in both urban and rural settings, disease transmission from animals 26 

can occur [2]. The relevance of zoonoses to human health has been particularly highlighted 27 

by recent highly virulent infections that threatened to become pandemic, with the potential 28 

for high mortality. Such incidents include the 2005 H5/N1 avian influenza outbreak, the 29 

2009 “swine flu” H1/N1 influenza pandemic, and the 2013-2016 West African Ebola 30 

outbreak [3, 4]. Although zoonotic viruses were responsible for these incidents, bacteria and 31 

parasites also pose threats for wide-spread zoonotic incidents [5]. Whilst lacking the global 32 

systemic threat of some viral zoonoses,  these ‘forgotten neglected zoonoses’ have more 33 

frequent local outbreaks that can have significant consequences [6].  34 

The 2005 H5/N1 avian influenza outbreak was the first zoonotic epidemic with high threat 35 

potential to unite global bodies in a network to address the threat of zoonoses [3]. The 36 

recognition of this zoonotic influenza as a potential global threat led to the establishment of 37 

surveillance networks; multiple national and international networks were set in motion to 38 

direct research. A key output of these networks was the One Health Initiative, founded in 39 

2006 [7]. The concept of a One Health approach sees the health of humans, animals and 40 

ecosystems as an interconnected network, rather than problems to be tackled individually 41 

[1, 7]. Key concepts of One Health include: viewing the health of all species as needing to be 42 

balanced; focusing on health assessment and disease prevention rather than exclusively on 43 

treatment; and promoting a strong collaborative between the human medicine and 44 
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veterinary sectors [7]. Under a single operative structure, the activities of both public health 45 

and veterinary services, along with others by extension, can be focussed together.  46 

Employing an “ecosystem approach” in a global context assists in mitigating health risks to 47 

both humans and animals [8]. Indeed, employing a pragmatic, preventative One Health 48 

approach to endemic zoonoses has been proposed to both be more equitable and have 49 

more effective benefits, compared to exclusively treating human cases of disease [9].  50 

Here, we review key aspects of four bacterial zoonoses, all of which have natural reservoirs 51 

or endemic areas across Europe. Anthrax, brucellosis, tularaemia and Q fever are caused by 52 

Bacillus anthracis, Brucella species, Francisella tularensis and Coxiella burnetii, respectively. 53 

These are all currently rare human diseases (respectively causing approximately 2, 105, 155 54 

and 230 cases per 100 million people per year in the European Union/European Economic 55 

Area (EU/EEA), Fig. 1) [10, 11]; however, sporadic outbreaks have devastating impacts for 56 

public health, animal health, and animal industries.  Common salient features of these 57 

zoonoses are: each causes debilitating, potentially fatal disease in both animals and 58 

humans; infectious doses are low (in some cases a single bacterium [12]); and zoonotic 59 

transmission is a risk for those working/living in proximity to animals, in addition to those 60 

consuming untreated animal products [13-16]. Consequently, the bacteria that cause each 61 

of these zoonoses consistently appear on select biological agent threat watch-lists across 62 

the globe [13, 17-19]. The principal routes of infection transmission and human risk groups 63 

for these diseases are summarised in Table 1. Contamination of land is also of concern for 64 

these pathogens, especially for C. burnetii and spores of B. anthracis which are highly 65 

resilient to external environments [19, 20].  66 

(Figure 1) 67 
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(Table 1)  68 

Data from the Surveillance Atlas of Infectious Diseases, a tool hosted at the European 69 

Centre for Disease Prevention and Control (ECDC), have been analysed for this review to 70 

discuss disease occurrence and trends in select EU/EEA Member States over a decade 71 

(2007-2016)
1
 [10]. This review discusses the European disease trends and global context of 72 

each disease, along with the characteristics of presentation and the medical interventions 73 

available. One Health approaches to disease management are highlighted, considering 74 

infection events in the context of ecosystem health. A key benefit of this approach is the 75 

integrated assessment of the interlinked challenges of food safety, global health, 76 

antimicrobial resistance and biological security threats [7]. These four zoonoses highlight 77 

important One Health lessons, and provide models of One Health principals in action, which 78 

can be applied more broadly to global zoonoses. 79 

2222 AAAANTHRAXNTHRAXNTHRAXNTHRAX    80 

Anthrax is caused by the soil-residing Bacillus genus. B. anthracis is the main causative 81 

agent, however, recently characterised isolates of Bacillus cereus from human infections 82 

have now been found to possess anthrax-linked virulence factors [25]. B. anthracis is known 83 

for its spore-forming ability, and the highly resilient nature of these spores [13]. B. anthracis 84 

spores are resistant to temperature extremes, drought and UV light, possibly due to 85 

protection of DNA in a crystalline core [26]. This makes decontamination of material and 86 

surfaces difficult.  87 

                                                      
1
 Data collected through The European Surveillance System (TESSy). Data is only available for Croatia from 

2012. 
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There were on average fewer than ten human anthrax infections per year in the EU/EEA 88 

between 2007-2016 (Fig. 1B & Fig. 2) [10]. However, historically, anthrax was a relatively 89 

common disease among humans and animals. In Victorian Britain, anthrax was described as 90 

‘woolsorters’ disease’; a disease experienced by wool-workers that could be fatal in as little 91 

as 24-36 hours [27]. The study of woolsorters’ disease identified B. anthracis as the 92 

causative agent, capable of infection by inhalation. Consequently control measures such as 93 

fans and ventilation systems were implemented in factories “so arranged as to carry the 94 

dust away from the worker” [28]. This demonstrated an early awareness of the risk of 95 

inhaling contaminated aerosols in occupations where animal material is handled. 96 

Most modern-day zoonotic incidences of anthrax in humans are due to bacterial 97 

contamination of skin abrasions, causing cutaneous anthrax. If diagnosed and treated 98 

appropriately this is rarely fatal, and largely non-contagious. Without treatment, the 99 

bacteria can disseminate to cause systemic infection, and mortality of inappropriately 100 

treated cutaneous anthrax is 20% [13]. However, infections occurring through ingestion or 101 

inhalation of bacteria have much higher mortality rates (25-100% for gastrointestinal 102 

anthrax, and 86-89% for inhalational anthrax) [13]. Human-to-human transmission of 103 

anthrax has not been reported. 104 

The level of treatment required depends on the severity of infection and can range from 105 

oral antibiotics to intravenous antibiotics and surgery or amputation as appropriate. All 106 

cases of inhalational anthrax require respiratory support in an intensive care unit. In some 107 

cases, anti-toxin antibodies or vaccine doses can be administered post-exposure [29, 30]. 108 

The frontline drugs for anthrax treatment are ciprofloxacin and doxycycline, which are 109 

usually administered together [31]. Daptomycin, of the cyclic lipopeptide class of antibiotics, 110 
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is being investigated for prophylactic/post-exposure treatment of B. anthracis infection; 111 

results from in vivo trials in non-human primates will confirm if this new class of antibiotic 112 

will be effective [32]. 113 

One of the vaccines used routinely for livestock is the toxin-producing, but non-capsule-114 

forming Sterne strain vaccine. This live-attenuated vaccine (LAV) still carries some virulence, 115 

particularly in goats and llamas, where vaccine-associated mortality can occur [33]. In 116 

addition to veterinary vaccines, there are several options for human vaccines, offered to 117 

those with occupational risks. The cell-free human vaccines Anthrax Vaccine Precipitated 118 

(AVP) and Anthrax Vaccine Adsorbed (AVA, also known as Biothrax™) are available in the UK 119 

and USA [34]. Both are derived from sterile filtrate preparations of the Sterne strain. AVA 120 

has recently been licensed for post-exposure prophylactic use by applying the “Animal Rule” 121 

regulations of the U.S. Food and Drug Administration (FDA) [30]. In addition to this, a live 122 

attenuated Salmonella spp. expressing the anthrax antigen Ty21a-PA-01 is currently being 123 

developed [35]. This aims to achieve a human vaccine that is stable at room temperature, 124 

and can be administered orally over a much-reduced immunisation period (approximately 125 

seven days compared to 18 months with AVA). These features would make this vaccine well-126 

suited for use in response deliberate release of the pathogen.  127 

In addition to the principal routes of transmission highlighted in Table 1, anthrax has also 128 

been found in cases of transmission linked to illegal drug use [36]. The first cases of 129 

injectional anthrax were documented in 2009 in heroin users in Scotland [37]. The outbreak 130 

continued for one year, with fourteen fatalities recorded in Scotland, and further cases 131 

confirmed in England and Germany (Fig. 1B and Fig. 2) [38]. A second outbreak of anthrax as 132 

a result of transmission by injection was experienced by the UK and Germany in 2012, with 133 
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small numbers of cases additionally in Denmark and France [38]. It was notable that the 134 

ECDC data showed fewer cases than were reported retrospectively by Health Protection 135 

Scotland [10, 37]. This discrepancy highlights that data from collated international databases 136 

should be interpreted as general trends, and that sources of primary literature are required 137 

to verify the data. The source of contamination was concluded to be from goat skins used to 138 

transport the heroin [37]. The fact that the spores were able to survive the drug preparation 139 

process highlights the extent of their resilience to external stressors [36]. 140 

Attesting to the resilience of anthrax spores was an anthrax outbreak in Italy in 2004, killing 141 

124 grazing animals, that portrayed a particularly unusual pattern of transmission [39]. After 142 

the removal of infected carcasses, which previously were left exposed to insects and wild 143 

animals, the rate of fatalities decreased. This led to the hypothesis that the pathogen was 144 

spread by flies, both necrophilic and haematophagic [39]. Due to the highly resistant nature 145 

of anthrax spores to low pH, insects that feed on infected animals and carcasses are a 146 

possible vector for further transmission. Some flying insects are able to transmit bacteria for 147 

at least 4 h after contact with an infected animal, e.g. the house fly Musca domestica [21].  148 

(Figure 2) 149 

When taking into account the injectional anthrax cases of 2009-2010 and 2012, it is clear 150 

that environmental transmission of B. anthracis in the EU/EEA is low (Fig. 2). Bulgaria and 151 

Romania are the only countries in this dataset which experience on average one case per 152 

year due to environmental exposure. Two events, in Romania and Bulgaria, were the result 153 

of the slaughter and consumption of infected cattle [40, 41]. In both countries, the One 154 

Health approach to managing anthrax is adopted. Such measures include robust reporting, 155 

rapid confirmation by laboratory diagnostics, appropriate medical interventions, and 156 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
8 

 

screening and prophylaxis where appropriate for those suspected of exposure. 157 

Furthermore, for animals quarantine, transport bans, vaccination of local livestock and 158 

domestic pets, tracing and destroying contaminated meat and animal products and 159 

disinfection of slaughter sites, processing factories and retail outlets are enforced [40, 41]. 160 

Part of the One Health strategy is also the implementation of laws that prohibit the 161 

slaughter and consumption of meat and animal products from sick animals to prevent 162 

contaminated products entering the food chain [40]. 163 

Anthrax illustrates the One Health challenges of eradication of robust environmental 164 

pathogens. Due to the resilience of bacterial spores, the risk for environmental 165 

contamination from abandoned animal carcases, or even soli-disturbance over historic 166 

animal graves, is significant [39, 42]. Direct eradication in the environment, requiring 167 

removal of vegetation [20], is impractical. Restricting re-emergence of veterinary and 168 

human disease requires vigilant surveillance to rapidly identify cases; vaccination of local 169 

livestock to prevent further disease; and swift disposal of infected animals/carcasses to 170 

prevent contamination of the environment and vector borne dispersal. 171 

3333 BBBBRUCELLOSISRUCELLOSISRUCELLOSISRUCELLOSIS    172 

Brucellosis is considered to be the most prevalent zoonosis globally [43], yet is classed by 173 

the WHO as a ‘forgotten neglected zoonosis’ [5]. Members of the Brucella genus are non-174 

spore-forming, Gram-negative bacteria. This genus consists of twelve species, four of which 175 

(B. melitensis, B. abortus, B. suis and B. canis) are relevant to human disease [44]. The most 176 

common routes of human infection are related to occupational contact with animals, with 177 

transmission through inhalation of aerosols and contact with animal secretions [14]. 178 

Consumption of animal products can also lead to contraction of brucellosis [45, 46]. Indeed, 179 
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it was a link between disease sufferers consuming raw goat milk, and later detection of B. 180 

melitensis in goat blood, that led to the recognition of it as the causative agent of ‘Malta 181 

fever’ [45]. Human-human transmission of brucellosis is rare, but has been documented 182 

[47]. 183 

As brucellosis is highly contagious between animals, can cause disease by aerosol inhalation, 184 

and has a low infectious dose, species of Brucella are commonly included on bioterrorism 185 

watch lists [18]. Furthermore, although this genus of bacteria are non-spore-forming, and 186 

less capable of survival in extreme environments than B. anthracis, Brucella can persist for 187 

many weeks in wet soil and ambient-temperature farm slurry [14].  188 

Brucellosis in humans, despite causing debilitating disease, is rarely fatal. In 2013 out of 357 189 

confirmed cases in the EU, 70% required hospital treatment, but only one fatality was 190 

recorded [48]. Symptoms in humans can reflect both acute, febrile illness and chronic 191 

systemic disease, and there can be an incubation period of up to six months before 192 

symptoms appear [31]. Treatment for brucellosis requires a course of antibiotics for at least 193 

six weeks, usually a doxycycline and rifampicin combination therapy [18]. In animals, 194 

brucellosis symptoms include abortion, infertility, decreased milk production, weight loss, 195 

and lameness [49], all of which impact on the economics of farming. Although there are a 196 

number of livestock vaccines available for Brucella species, none are licensed for use in 197 

humans [44]. It is important for disease surveillance and diagnosis to be able to distinguish 198 

between vaccinated and infected animals. The cattle vaccine B. abortus RB51 has a rough 199 

phenotype which enables serological differentiation between vaccinated and diseased 200 

animals because animals vaccinated with RB51 do not make antibodies against Brucella’s 201 

lipopolysaccharide [44]. However, the similar antibody profile generated in vaccinated small 202 
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ruminants (B. melitensis Rev. 1 vaccine) to that of live Brucella exposure makes herd-203 

surveillance for infection challenging where vaccination is common-place. Recently, new 204 

insights into the specific antigenic structure of the bacterial cell wall O-polysaccharide (OPS) 205 

have offered a resolution to this issue, revealing potential for new diagnostic markers for 206 

herd surveillance [49]. Additionally, OPS research is paving the way towards development of 207 

a synthetic glycoconjugate vaccine for use in humans and animals, which would be 208 

unreactive in serodiagnostic tests [49].   209 

(Figure 3) 210 

Between 2007-2016 Greece reported the highest prevalence of brucellosis in its population, 211 

with on average 12 in 100,000 inhabitants contracting the disease annually (Fig. 3) [11]. This 212 

is unsurprising as Greece also has the most abundant population of sheep and goats in the 213 

EU/EEA. An eradication program started in 1975 with the vaccination of young sheep and 214 

goats, on both the islands and mainland Greece [50]. A 2006 report from the UN highlights 215 

difficulties in quantifying incidence in human cases [14]. Italy alone consistently reports the 216 

highest average cases per year in countries reporting to the ECDC (Fig. 3), however, despite 217 

this it is estimated that brucellosis could be over 20-fold under-reported within the country 218 

[51].   219 

In Bulgaria, after a period of 50 years free from brucellosis, the disease has started to re-220 

emerge [52] with the most recent epidemic occurring in 2015 (Fig. 3). This was hypothesised 221 

to be the result of unauthorised import of infected animals from neighbouring endemic 222 

countries [46]. Cross-border transmission of zoonoses threatens to re-instate endemicity in 223 

countries that had previously been declared free of disease. France was declared officially 224 

free from bovine brucellosis according to the criteria of the World Organisation for Animal 225 
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Health (OIE) in 2005, yet through human surveillance, re-emergence of the disease in cattle 226 

was detected [53]. The specific risks of cross-border transmission of brucellosis into Europe 227 

have been studied in the context of transmission-risk from middle-eastern countries, where 228 

there are some of the highest incidences of brucellosis in the world. Turkey has more than 229 

15,000 new cases per year [54], and Syria has an incidence of >1,000 in 100,000 [43]. In a 230 

recent case of brucellosis in a Syrian refugee in Germany, one of the ‘lessons learnt’ was 231 

that gaining a travel history from patients presenting with an undiagnosed ailment is of high 232 

import [55]. Molecular epidemiology tracing B. melitensis in Germany to immigrants and 233 

German travellers identified similar concerns for correct identification of non-endemic 234 

disease [54].To better understand disease patterns, trends and monitor outbreaks in real 235 

time, up to date mapping approaches can be used that harness new computer technologies 236 

[56]. This would rely in cooperative data exchange between monitoring agencies. These 237 

observations highlight that threats posed by biological agents are not confined by 238 

geographical barriers or political boundaries. Brucellosis highlights the need for non-239 

endemic or “infection-free” countries to remain aware of the risks of global zoonoses. 240 

4444     TTTTULARULARULARULARAAAAEMIAEMIAEMIAEMIA    241 

Tularaemia is a zoonotic disease caused by F. tularensis. Although there are four subspecies, 242 

only two are clinically relevant: F. tularensis subsp. tularensis (type A) and F. tularensis 243 

subsp. holarctica (type B). Whilst type A strains cause the most severe disease, with an 244 

infectious dose of fewer than ten organisms, natural reservoirs are restricted to North 245 

America [15, 57]. F. tularensis subsp. holarctica is relevant in Europe, with prevalence across 246 

the Northern hemisphere, and an infectious dose of 10-50 bacteria [15, 31]. Clinical 247 

presentation of tularaemia in humans is highly dependent on the route of transmission, in a 248 
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similar manner to cutaneous/gastrointestinal anthrax (Table 1). Ingestion of food or water 249 

contaminated with F. tularensis causes oropharyngeal disease [16]. Blood contact with 250 

infected animals from scratches/cuts or insect bites more often results directly in glandular 251 

presentation, causing swelling and ulcers. Finally, transmission through inhalation of 252 

aerosols in contaminated dust leads to a pneumonic presentation [16]. The latter two 253 

modes have the highest risk of environmental transmission for hunters and farmers. 254 

Pneumonic tularaemia is also the most relevant disease presentation in the context of 255 

bioterrorism [17]. The incubation period ranges from 1-14 days, and is generally 2-5 days 256 

[57]. Without treatment, both glandular and oropharyngeal infections can persist for weeks 257 

or months and may progress to the more serious and potentially fatal pneumonic or 258 

septicaemic tularaemia [57]. 259 

As with inhalational anthrax, due to the potential severity of symptoms and risk of mortality, 260 

a dual antibiotic approach is recommended for treatment of pneumonic tularaemia, for 261 

example gentamicin and ciprofloxacin [31]. In 2013, information on the outcome of 262 

confirmed tularaemia cases in Europe (covering almost 50% of reported cases), showed that 263 

approximately 52% of cases required hospital treatment, however no deaths were reported 264 

[48]. Due to the nature of the undulating fever associated with tularaemia, it is expected 265 

that the number of cases will be under-reported [58]. No human vaccine for tularaemia is 266 

licenced yet in the EU/EEA. A live vaccine strain (LVS) was produced in the Soviet Union 267 

through serial passaging, from F. tularensis subsp. holarctica, this has been in clinical trials, 268 

but currently safety and efficacy concerns have prohibited licensure [57, 59]. A modern LAV 269 

showing promise is based on Francisella novicida, a bacterial species avirulent in healthy 270 

humans [60]. Further to this, a new vaccine strategy is also in development, employing a 271 

glycoconjugate subunit vaccine, in a similar approach to that being used for brucellosis [61].  272 
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 (Figure 4) 273 

Across all EU/EEA Member States, Sweden, Finland and Norway had the highest reported 274 

prevalence of tularaemia in their populations between 2008-2016 (Figs. 1A and 4). Sweden 275 

alone was responsible for 43% of the average yearly cases of tularaemia in the EU/EEA, with 276 

on average four in every 100,000 people reporting a case each year [10, 11].  F. tularensis 277 

subsp. holarctica is able to infect a range of animal hosts: recently identified wild hosts 278 

include the red fox (Vulpes vulpes), wild boar (Sus scrofa) and raccoon dog (Nyctereutes 279 

procyonoides). However, most tularaemia surveillance in European animals comes from 280 

recording dead/diseased farmed rabbits/hares [16]. Infection of such forest mammals, and 281 

even fish, with F. tularensis subsp. holarctica leads to a risk of zoonotic transmission for any 282 

activities which involve contact with wildlife in endemic areas, most notably hunting (Table 283 

1) [62]. The peaks of tularaemia outbreaks in the EU occur over the end of the summer, 284 

coinciding with the peak in mosquito populations [16]. It is therefore widely accepted that 285 

mosquitos are responsible for the transmission of F. tularensis subsp. holarctica between 286 

animals, and to humans (Table 1). A single contaminated water source can lead to 287 

mosquito-borne transmission of tularaemia [15, 22]. Furthermore, as the taiga forest covers 288 

the three European countries with highest reported prevalence of tularaemia, it is not 289 

surprising that they share natural sources for infection. Therefore, the relationship between 290 

humans and animals with parasites and vectors plays a key role in the spread of infection 291 

[63].  292 

The survival and propagation of F. tularensis subsp. holarctica in natural fresh and brackish 293 

water has been well studied, however, there have been fewer studies on the environmental 294 

survival of F. tularensis subsp. tularensis [15, 62]. An unusual outbreak of tularaemia on an 295 
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island off the coast of Cape Cod, USA led to establishing that F. tularensis subsp. tularensis 296 

can indeed survive in brackish water [64]. This outbreak on Martha’s Vineyard, spanning 297 

from 2000-2008, was unusual due to the skew of disease presentation to pneumonic, rather 298 

than the glandular presentation associated with bites from parasites, and contamination of 299 

skin wounds [23]. Two thirds of the 90 reported cases displayed pneumonic symptoms. The 300 

observation of pneumonic presentation led to investigations to track the source of infection, 301 

to ensure that this was a natural event and not bioterrorism [17]. However, no 302 

environmental samples were positive for either of the disease-causing species of F. 303 

tularensis [23, 64]. It remains unknown what the true reservoir for F. tularensis subsp. 304 

tularensis is on Martha’s vineyard; without definition of this, intervention methods are 305 

limited. However, links have been made with landscaping activities increasing likelihood for 306 

infection, thus is it advised to wear personal protective equipment e.g. masks [23].  307 

The management of tularaemia outbreaks highlights the need for human, animal and whole 308 

ecosystem surveillance systems to achieve an efficient One Health approach [6, 7, 58]. 309 

Understanding the source of infection is important for deployment of the most effective 310 

response to minimise disease. For example, if a parasite/rodent source is suspected, 311 

methods for pest control would be advised, however, if the source was a water system then 312 

disease management should focus on personal protection, for example vaccination [65]. In 313 

addition to the need of vaccines for ecosystem health in endemic areas, vaccine 314 

development strategies are also important to address F. tularensis as a potential bioterror 315 

agent [17].  316 
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5555 QQQQ    FEVERFEVERFEVERFEVER    317 

Query fever, or Q fever as it is more commonly known, is the zoonosis caused by C. burnetii, 318 

an obligate intracellular bacterium that is globally prevalent (except in New Zealand) [66]. C. 319 

burnetii, similar to F. tularensis, infects a wide range of species, including terrestrial 320 

mammals such as cats and dogs, and even aquatic mammals [66, 67]. However, Q fever is of 321 

particular economic significance in ruminants, such as cows, sheep and goats [68]. In such 322 

animals, symptoms are similar to those of brucellosis, with spontaneous abortion of 323 

pregnancies being the main clinical symptom. Again, this causes a substantial economic 324 

impact for animal industries [68]. The material shed from animal infections (e.g. abortive 325 

material, milk, faeces and urine) contaminates dirt and dust in the environment with C. 326 

burnetii. Here, C. burnetii cells adapt to the harsh environment outside of a host by adopting 327 

a highly resilient spore-like state [66]. These highly resistant cells behave similarly to anthrax 328 

spores, remaining viable for years and easily becoming aerosolised in wind, for example in 329 

dust clouds, where they can spread to new areas and infect new hosts [69].  330 

Inhalation of bacteria is the most common route of Q fever transmission to humans. As few 331 

as 1-10 aerosolised C. burnetii cells can result in zoonotic transmission, therefore occupation 332 

is a key risk-factor for disease; individuals at highest risk of Q fever exposure are farmers, 333 

abattoir workers and vets [12, 70]. In Australia, prior to an increase in Q-fever vaccination as 334 

many as 60% of meat and agricultural workers were seropositive after 25 years in the 335 

industry [70]. In addition to occupational risks, the presence of C. burnetii in ruminant milk, 336 

as with Brucella, also poses a risk for disease transmission [71-74] (Table 1). Humans 337 

generally present with acute infections, causing symptoms of an undifferentiated febrile 338 

illness after an incubation period of 2-40 days (most commonly 18-21 days) [31, 75]. 339 
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However, patients can develop life-changing complications from persistent focalised 340 

infections, such as hepatitis, chronic fatigue, and endocarditis [76]. A quick and accurate 341 

diagnosis for Q fever is important as although little is known about the development of 342 

persistent infections, and post–Q fever fatigue, the severity of the initial infection is a known 343 

risk factor [66]. Doxycycline, often administered as a monotherapy, is the primary antibiotic 344 

used in the treatment of acute Q fever in humans, and swift administration should minimise 345 

complications [31, 66]. For animals, a whole-cell inactivated vaccine, Coxevac, can be used 346 

to prevent infection, and has been shown to reduce shedding of bacteria when applied in 347 

combination with antibiotic therapy for dairy herds already affected by Q fever [77].  While 348 

a similar formalin-inactivated whole-cell vaccine is available for human use in Australia, 349 

there is currently no Q fever vaccine licensed in the UK/EU/US, but research programs are 350 

on-going [78]. 351 

(Figure 5) 352 

Between 2007-2010 the Netherlands experienced the biggest Q fever epidemic in recorded 353 

history (Fig. 5). Over 4,000 human cases were confirmed during this outbreak; additionally, 354 

over 50,000 dairy goats were culled [79]. A cross-sectional population-based serological 355 

survey later confirmed that airborne bacteria carried on the wind from infected goat farms 356 

was responsible for zoonotic transmission [69]. Real-time PCR for acute-phase diagnostics 357 

was pivotal to the outbreak assessment, contributing to the ability to confirm a Q fever 358 

diagnosis in cases where serology was inconclusive [80]. Directly following the outbreak only 359 

six fatalities were reported but by May 2016 the death toll had risen to 74 [81]. The rise to 360 

74 by 2016 reflects that Q fever infections can remain dormant, with persistent focalised 361 

infections causing symptoms long after exposure [76, 82]. As a result of the epidemic, 362 
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seroprevalence to C. burnetii antibodies in the general population of the Netherlands rose 363 

from 2.4% in 2006 to 6.1% in 2015 [69]. One key output of the Netherlands epidemic was 364 

the establishment of a national zoonosis structure with a monthly signalling forum [68].  365 

In the Netherlands, after the onset of the large epidemic, in December 2009 government 366 

measures were put in place to vaccinate all dairy goats and sheep, and to test and cull 367 

pregnant animals testing positive for C. burnetii. One of the methods for detection was the 368 

presence or absence of C. burnetii DNA in bulk tank milk (BTM) tested by PCR [72]. However, 369 

up to nine days after immunisation, vaccine-derived C. burnetii DNA can be detected in the 370 

milk of dairy goats which have not had live pathogen exposure. As a results of this a two-371 

week post-vaccination interval was introduced to the test-and-cull control measures, in 372 

order to avoid unnecessary culling due to vaccine-derived false-positive detection [71].  373 

Globally, in French Guiana acute Q fever is responsible for the highest proportion of 374 

community-acquired pneumonia worldwide [83], followed by Canada, Northern Spain, 375 

Croatia and the Netherlands [66].  In Cayenne, French Guiana, Q fever is a hyperendemic 376 

disease, with the incidence of cases in 2005 reaching 150 cases per 100,000 inhabitants [84]. 377 

A retrospective cohort study recently linked two independent risk factors to a 2013 378 

epidemic in Cayenne: cleaning the house; and carrying a three-toed sloth. Both of these 379 

activities correlate to inhalational disease acquisition [85].  380 

In 2013, Hungary experienced a Q fever outbreak, albeit on a smaller scale (Fig. 5). The 381 

source of this epidemic was tracked to a flock of Merino sheep, where, as with the previous 382 

Netherlands epidemic, dried contaminated material was carried by the wind causing human 383 

infections by inhalation [86]. The epidemic was resolved after all manure from the infected 384 

farm was eliminated and the farm disinfected. Furthermore, for the management of C. 385 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
18 

 

burnetii infection spread within a herd, good farm practices such as regular litter-cleaning 386 

have been recommended as simple measures prior to whole-farm disinfection [87]. 387 

Generally, Q fever infection in humans is controllable by good hygiene practices when 388 

dealing with animals, particularly ruminants. From a One Health perspective, Q fever 389 

represents one example of a wide range of conditions that cause febrile disease. Rapid 390 

diagnostics that can differentiate these (often rare) underlying diseases offer the 391 

opportunity to avoid unnecessary antimicrobial use and to take early, specific actions to 392 

prevent development of disease [24, 80]. Surveillance of enzootic pathogens using 393 

seroprevalence in livestock assists in informing the risk of transmission of zoonoses to 394 

humans.   395 

6666 DDDDISCUSSIONISCUSSIONISCUSSIONISCUSSION////    CCCCONCLUSIONSONCLUSIONSONCLUSIONSONCLUSIONS    396 

Bacterial zoonoses are often omitted from discussions on priority global zoonoses. 397 

Nevertheless, they remain relevant to One Health while reservoirs for disease remain 398 

prevalent in areas with endemic zoonoses [9]. Anthrax is enzootic to Eastern Europe, with 399 

consistent yearly cases of zoonotic transmission in Bulgaria and Romania (Fig. 2) [10]. While 400 

brucellosis eradication programmes are being employed across Europe, the disease remains 401 

endemic in both Greece and Italy [50, 51]. However, the main threat for brucellosis re-402 

emergence in Europe arises from countries such as Syria, which has an incidence 100-times 403 

greater than that of endemic European countries [43]. Sweden has the highest endemic 404 

prevalence of F. tularensis subsp. holarctica, with 43% of tularaemia cases reported to the 405 

ECDC occurring there. For a zoonosis like this, where >50% of cases can require hospital 406 

treatment, applying One Health control and prevention measures in an eco-system 407 

approach offers an attractive model for lessening the economic burden of disease [9]. 408 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
19 

 

Whilst endemic globally, it was the Q fever epidemic experienced by the Netherlands that 409 

drew global attention to the disease [79]. The networks in place for a One Health approach 410 

to endemic disease management apply also in response to epidemics [88]; analysis here 411 

shows that 67% of all Q fever cases reported to the ECDC between 2008-2010 occurred in 412 

the Netherlands (the latter three years of the 2007-2010 epidemic) (Fig. 5) [10]. However, in 413 

the six years following, only 5% of the total cases across the EU/EEA were of Dutch origin, 414 

showing an effectively maintained response.  415 

One Health intervention methods include surveillance, medical interventions (post-exposure 416 

therapeutics and prophylactic vaccines), and sanitation. The case for employing One Health 417 

initiatives, and engaging communities to partake in them, clearly highlights the potential for 418 

much improved efficacy, and more equitable health and livelihood benefits [9]. In addition 419 

to monitoring and controlling endemic disease epidemics, it is also important to keep the 420 

global conversation updated on bacterial zoonoses due to the potential threat of their 421 

malicious misuse. 422 

Surveillance requires accurate and reliable reporting mechanisms, so that appropriate 423 

points for intervention can be recognised [88]. Maintaining reliable information on 424 

international prevalence (both human and animal), and detailed case histories for infection 425 

incidence is paramount to One Health. These will include national reporting structures, such 426 

as that set-up after the Q fever outbreak in the Netherlands [68]. International tools for 427 

collating data, such as The ECDC Surveillance Atlas of Infectious Diseases [10] offer a 428 

broader perspective, and information for professionals in all sectors working towards One 429 

Health. 430 
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Diagnostics play a key role in disease surveillance. Misdiagnosis results in inappropriate 431 

treatment, or missed opportunities to prevent further disease transmission. The zoonoses 432 

discussed here often present as undifferentiated febrile illnesses, and so a detailed history is 433 

key to diagnosis. More common ailments with similar symptoms will be initially suspected, 434 

and diagnosis may be missed altogether in self-limiting cases. While algorithm tools for 435 

disease diagnosis and management have been developed to aid medical professionals in 436 

diagnosis of zoonoses [89], there is a clear need for accurate and sensitive point-of-care 437 

diagnostic tests [9]. Emerging technologies such as high throughput sequencing and 438 

semiconductor genome analysis offer the potential for diagnosis within hours [90]. This will 439 

be of particular benefit for zoonoses where development to persistent or chronic disease is 440 

a risk [57, 76].   441 

Medical interventions, including post-exposure therapeutics such as antibiotics are essential 442 

especially for human treatment [31]. For diseased animals, post-exposure therapy is often 443 

not a viable approach, due to the associated costs, risk of further transmission, and 444 

virulence of these infections potentially causing death before culling. Instead, One Health 445 

necessitates a focus on prevention, and requires cheap, effective and readily deployable 446 

prophylaxis methods, such as veterinary and human vaccines [9]. Current vaccine research 447 

directives are progressing away from LAVs or whole cell killed vaccines. Such approaches are 448 

using reverse vaccinology, subunit vaccines and conjugate vaccines (e.g. the Salmonella-449 

Ty21a-PA-01 anthrax toxin conjugate vaccine, glycoconjugate vaccines for brucellosis and 450 

tularaemia, and epitope-selected subunit vaccines for Q fever [35, 49, 61, 78]). These 451 

minimise safety risks (such as potential animal toxicity of the anthrax Sterne strain vaccine), 452 

and enable more effective herd surveillance methods. The prospect of room-temperature-453 
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stable vaccines (e.g. anthrax toxin-conjugate vaccine [35]) offers advantages for public 454 

health and veterinary preparedness, as well as outbreak and bio-terrorism management.  455 

Sanitation such as basic infection control measures should be taken in areas of endemic 456 

zoonoses, including vaccination where appropriate, good hygiene practices and the use of 457 

appropriate personal protective equipment (especially where exposure to aerosols is a risk) 458 

[23, 24]. In Australia, it is recommended that clothing potentially contaminated with C. 459 

burnetii should not be washed in the presence of un-vaccinated individuals [24]. Farm 460 

sanitation is also important, as shown for Brucella which can survival in farm slurry [14], and 461 

the recommendation for regular cleaning and incineration of litter to prevent the spread of 462 

Q fever in a herd [87].  463 

Bioterror classifications set by the United States Centers for Disease Control and Prevention 464 

(U.S. CDC) classify anthrax and tularaemia as Category A agents, the highest priority [91]. 465 

This is due to their transmissibility, potential for high mortality, potential for major impact 466 

to public health, potential to cause public panic and social disruption, and the requirement 467 

of special action for public health preparedness. Brucellosis and Q fever appear in Category 468 

B where, despite high infectiousness, mortality rates are lower [91]. One key aspect to 469 

disease threat categorisation is whether the disease exists naturally or is endemic. For 470 

example, in the UK, any confirmed case of a non-endemic biothreat should be assumed to 471 

be the result of a deliberate release until proven otherwise [31]. This is the case for 472 

pulmonary anthrax and tularaemia, in addition to other zoonoses such as smallpox, plague, 473 

glanders, Venezuelan equine encephalitis (VEE) or viral haemorrhagic fever (VHF). 474 

Appreciation of an area’s endemic pathogens, in the context of global distribution, is 475 

therefore of considerable importance to threat assessment [88]. Anthrax is possibly the 476 
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most high profile modern biological threat agent, due to its weaponization and use in the 477 

late 20
th

 century, most notably the intentional contamination of postal letters in 2001, 478 

resulting in five mortalities [92]. There has been speculative evidence of C. burnetii used 479 

maliciously in Europe in the past, including an outbreak of Q fever among army troops 480 

during World War II [93]. Indeed, F. tularensis was also suspected to have been deployed 481 

maliciously during World War II [17]. Used as weapons,  Brucella species (notably B. suis),  F. 482 

tularensis subsp. holarctica and C. burnetii would have low mortality rates, but carry the 483 

potential to debilitate large numbers of people and animals, contaminate the environment, 484 

and disrupt animal industries [93, 94]. 485 

While transmission of zoonotic disease in the EU/EEA is most relevant to those with 486 

occupational health risks, global threats to human, animal and environmental health 487 

security do remain from cross-border transmission, environmentally resilient pathogens and 488 

the potential for biological agent weaponization. The most poignant risk to global health is 489 

the lack of disease awareness, and ignorance of the interlinked connections between global 490 

health, food safety, antimicrobial resistance and biological security threats. Thus employing 491 

a One Health approach is vital, and local and international information-sharing on 492 

surveillance, control and prevention measures is of the utmost importance to enabling One 493 

Health for all zoonoses. 494 
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Figure 1: Reported cases of anthrax, brucellosis, tularaemia and Q fever in the EU/EEA 736 

between 2008-2016. A) Maps of the EU/EEA colour-coded by the total number of cases of 737 

each zoonosis reported where data is available. Data on Q fever occurrence in Italy is not 738 

available for 2008-2015, therefore it is omitted here. B) Reported annual cases of 739 

brucellosis, Q fever and tularaemia; Anthrax is omitted here due to the much smaller 740 

number of cases (on average fewer than 10 per year). Dataset provided by ECDC based on 741 

data provided by WHO and Ministries of Health from the affected countries [10]. Figure 742 

generated using mapchart.net (https://mapchart.net/europe.html), GraphPad Prism v.6.0.1 743 

and gravit.io (https://gravit.io/).  744 
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Figure 2: Number of cases of anthrax reported each year in the EU/EEA.  Data is shown for 745 

every country with at least one case reported between 2007-2016. Peaks in cases reported 746 

to the ECDC have been attributed to injectional anthrax, caused by the use of contaminated 747 

heroin. 14 cases were reported to the ECDC in 2009 and 32 in 2010. It should be noted that 748 

there is a discrepancy between the ECDC data and original literature reported in December 749 

2011 for the injectional anthrax outbreak, reflecting under-reporting by approximately 20% 750 

in the data shown here [37]. 2012 then saw a second episode of injectional anthrax cases in 751 

the UK and Germany again, with an additional report in France and two in Denmark. Dataset 752 

provided by ECDC based on data provided by WHO and Ministries of Health from the 753 

affected countries [10]. Figure generated using GraphPad Prism v.6.0.1.  754 
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Figure 3: Number of cases of brucellosis reported each year in the EU/EEA. Data is shown 755 

for every country with >50 total cases reported between 2007-2016. In most European 756 

Member States, the notification of brucellosis in humans is mandatory. The exceptions are 757 

the UK (where only animal infection is notifiable), Belgium, and Denmark. Voluntary 758 

surveillance systems have full national coverage in the former two, but in Denmark 759 

brucellosis remains non-notifiable, with no surveillance system in place [48]. Brucellosis 760 

prevalence is highest in Italy and Greece; Italy consistently reports the highest average cases 761 

per year, but Greece has the highest incidence in its population, with on average 12 in 762 

100,000 Greeks reporting a case of brucellosis each year, four times more than Italians. 763 

Despite high incidence of brucellosis in Spain at the start of Atlas data records, this has 764 

generally fallen from over 200 reported cases in 2007 to only 37 cases reported in 2016. 765 

Bulgaria had an outbreak in 2015 with 36 cases, compared to the yearly average of just six. 766 

2008 had the highest number of cases of brucellosis across the EU/EEA between 2007-2016, 767 

with a total of 735 cases. That is 37% higher than the average total number of cases per year 768 

over that period. Dataset provided by ECDC based on data provided by WHO and Ministries 769 

of Health from the affected countries [10]. Figure generated using GraphPad Prism v.6.0.1. 770 
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Figure 4: Number of cases of tularaemia reported each year in the EU/EEA. Data is shown 771 

for every country with >100 total cases reported between 2008-2016. Human tularaemia is 772 

not a notifiable disease in Denmark, Portugal and Liechtenstein, however, notification is 773 

mandatory in most EU/EEA member states [16] (Fig. 4). A voluntary surveillance system is in 774 

place for Belgium and the United Kingdom [48]. Sweden reported the highest total number 775 

of cases, 3164, followed by Finland, Czech Republic, Norway and Hungary. France, Germany, 776 

Spain and Slovakia experienced much lower incidences, fewer than 1 in 100,000 cases 777 

reported each year on average. 2015 saw the highest number of reported cases of 778 

tularaemia over 2008-2016, with 64% of these occurring in Sweden. Sweden generally 779 

reported more cases each year than any other country except in 2009 when Finland saw 780 

twice its average yearly cases, and in 2016 when Finish cases reached a peak of 699, 3.6 781 

times its yearly average. In 2011 Norway also saw three times its average number of cases, 782 

affecting almost 4 in every 100,000 people. In both 2010 and 2014 Hungary experienced 783 

outbreaks with 126 and 140 reported cases, compared to the yearly average of 56. Dataset 784 

provided by ECDC based on data provided by WHO and Ministries of Health from the 785 

affected countries [10]. Figure generated using GraphPad Prism v.6.0.1.  786 
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Figure 5: Number of cases of Q fever reported each year in the EU/EEA. Data is shown for 787 

every country with >125 total cases reported between 2008-2016. The 2007-2010 Q fever 788 

epidemic was contained within southern areas of the Netherlands, affecting small ruminant 789 

farms in the direction of the prevailing wind from the affected goat farms. This accounted 790 

for 37% of the total cases of Q fever in the EU/EEA between 2008-2016, with on average 791 

1,300 cases reported per year. After this was resolved, the country with the highest 792 

prevalence of Q fever was Germany, with on average 240 cases/year between 2011-2016 793 

(incidence of 2 in 100,000), followed by France, Spain and Hungary, with 180, 110 and 60 794 

cases/year, respectively. In the six years following the epidemic resolution the Netherlands 795 

experienced a much-reduced average of 37 cases reported per year. Additionally, in 2013 796 

Hungary experienced an epidemic of 135 cases, this was resolved within two years. Dataset 797 

provided by ECDC based on data provided by WHO and Ministries of Health from the 798 

affected countries [10]. Figure generated using GraphPad Prism v.6.0.1.  799 
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Table 1: Principal routes of transmission of bacterial zoonoses. Occupational exposure 800 

relates most specifically to veterinarians, farm workers and abattoir workers. Wildlife leisure 801 

refers to hunters/hikers. 802 
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