23 research outputs found

    TNF-Îą/TNFR1 Signaling Is Required for the Development and Function of Primary Nociceptors

    Get PDF
    SummaryPrimary nociceptors relay painful touch information from the periphery to the spinal cord. Although it is established that signals generated by receptor tyrosine kinases TrkA and Ret coordinate the development of distinct nociceptive circuits, mechanisms modulating TrkA or Ret pathways in developing nociceptors are unknown. We have identified tumor necrosis factor (TNF) receptor 1 (TNFR1) as a critical modifier of TrkA and Ret signaling in peptidergic and nonpeptidergic nociceptors. Specifically, TrkA+ peptidergic nociceptors require TNF-ι-TNFR1 forward signaling to suppress nerve growth factor (NGF)-mediated neurite growth, survival, excitability, and differentiation. Conversely, TNFR1-TNF-ι reverse signaling augments the neurite growth and excitability of Ret+ nonpeptidergic nociceptors. The developmental and functional nociceptive defects associated with loss of TNFR1 signaling manifest behaviorally as lower pain thresholds caused by increased sensitivity to NGF. Thus, TNFR1 exerts a dual role in nociceptor information processing by suppressing TrkA and enhancing Ret signaling in peptidergic and nonpeptidergic nociceptors, respectively

    Detecting Bioterror Attacks by Screening Blood Donors: A Best-Case Analysis

    Get PDF
    To assess whether screening blood donors could provide early warning of a bioterror attack, we combined stochastic models of blood donation and the workings of blood tests with an epidemic model to derive the probability distribution of the time to detect an attack under assumptions favorable to blood donor screening. Comparing the attack detection delay to the incubation times of the most feared bioterror agents shows that even under such optimistic conditions, victims of a bioterror attack would likely exhibit symptoms before the attack was detected through blood donor screening. For example, an attack infecting 100 persons with a noncontagious agent such as Bacillus anthracis would only have a 26% chance of being detected within 25 days; yet, at an assumed additional charge of 10pertest,donorscreeningwouldcost10 per test, donor screening would cost 139 million per year. Furthermore, even if screening tests were 99.99% specific, 1,390 false-positive results would occur each year. Therefore, screening blood donors for bioterror agents should not be used to detect a bioterror attack

    Detecting Bioterror Attacks by Screening Blood Donors: A Best-Case Analysis

    Get PDF
    To assess whether screening blood donors could provide early warning of a bioterror attack, we combined stochastic models of blood donation and the workings of blood tests with an epidemic model to derive the probability distribution of the time to detect an attack under assumptions favorable to blood donor screening. Comparing the attack detection delay to the incubation times of the most feared bioterror agents shows that even under such optimistic conditions, victims of a bioterror attack would likely exhibit symptoms before the attack was detected through blood donor screening. For example, an attack infecting 100 persons with a noncontagious agent such as Bacillus anthracis would only have a 26% chance of being detected within 25 days; yet, at an assumed additional charge of 10pertest,donorscreeningwouldcost10 per test, donor screening would cost 139 million per year. Furthermore, even if screening tests were 99.99% specific, 1,390 false-positive results would occur each year. Therefore, screening blood donors for bioterror agents should not be used to detect a bioterror attack

    The SPARC water vapour assessment II: comparison of annual, semi-annual and quasi-biennial variations in stratospheric and lower mesospheric water vapour observed from satellites

    Get PDF
    In the framework of the second SPARC (Stratosphere-troposphere Processes And their Role in Climate) water vapour assessment (WAVAS-II), the amplitudes and phases of the annual, semi-annual and quasi-biennial variation in stratospheric and lower mesospheric water were compared using 30 data sets from 13 different satellite instruments. These comparisons aimed to provide a comprehensive overview of the typical uncertainties in the observational database which can be considered in subsequent observational and modelling studies. For the amplitudes, a good agreement of their latitude and altitude distribution was found. Quantitatively there were differences in particular at high latitudes, close to the tropopause and in the lower mesosphere. In these regions, the standard deviation over all data sets typically exceeded 0.2 ppmv for the annual variation and 0.1 ppmv for the semi-annual and quasi-biennial variation. For the phase, larger differences between the data sets were found in the lower mesosphere. Generally the smallest phase uncertainties can be observed in regions where the amplitude of the variability is large. The standard deviations of the phases for all data sets were typically smaller than a month for the annual and semi-annual variation and smaller than 5 months for the quasi-biennial variation. The amplitude and phase differences among the data sets are caused by a combination of factors. In general, differences in the temporal variation of systematic errors and in the observational sampling play a dominant role. In addition, differences in the vertical resolution of the data, the considered time periods and influences of clouds, aerosols as well as non-local thermodynamic equilibrium (NLTE) effects cause differences between the individual data sets

    Efficacy of Messenger RNA-1273 Against Severe Acute Respiratory Syndrome Coronavirus 2 Acquisition in Young Adults From March to December 2021

    Get PDF
    BACKGROUND: The efficacy of messenger RNA (mRNA)-1273 against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is not well defined, particularly among young adults. METHODS: Adults aged 18-29 years with no known history of SARS-CoV-2 infection or prior vaccination for coronavirus disease 2019 (COVID-19) were recruited from 44 US sites from 24 March to 13 September 2021 and randomized 1:1 to immediate vaccination (receipt of 2 doses of mRNA-1273 vaccine at months 0 and 1) or the standard of care (receipt of COVID-19 vaccine). Randomized participants were followed up for SARS-CoV-2 infection measured by nasal swab testing and symptomatic COVID-19 measured by nasal swab testing plus symptom assessment and assessed for the primary efficacy outcome. A vaccine-declined observational group was also recruited from 16 June to 8 November 2021 and followed up for SARS-CoV-2 infection as specified for the randomized participants. RESULTS: The study enrolled 1149 in the randomized arms and 311 in the vaccine-declined group and collected >122 000 nasal swab samples. Based on randomized participants, the efficacy of 2 doses of mRNA-1273 vaccine against SARS-CoV-2 infection was 52.6% (95% confidence interval, -14.1% to 80.3%), with the majority of infections due to the Delta variant. Vaccine efficacy against symptomatic COVID-19 was 71.0% (95% confidence interval, -9.5% to 92.3%). Precision was limited owing to curtailed study enrollment and off-study vaccination censoring. The incidence of SARS-CoV-2 infection in the vaccine-declined group was 1.8 times higher than in the standard-of-care group. CONCLUSIONS: mRNA-1273 vaccination reduced the incidence of SARS-CoV-2 infection from March to September 2021, but vaccination was only one factor influencing risk. CLINICAL TRIALS REGISTRATION: NCT04811664

    Resistance Oscillations in Superconducting Aluminum Nano Arrays and Loops

    No full text
    This year marks the 105th anniversary of Heike Kameringh Onnes’ discovery of superconductivity. This surprising discovery was the was the result of Onnes’ work culminating in the liquefaction of helium, which gave him access to temperatures low enough to allow materials to become superconducting and earned him a Nobel Prize shortly after the discovery. There was of course much interest in this new field, yet a complete theoretical understanding of this phenomenon remained elusive for many decades. It wasn’t until the 1950’s and 1960’s that a, "complete and satisfactory theoretical picture of classical superconductors" took shape with the introduction of the phenomenological Ginzburg-Landau theory of superconductivity in 1950 and the microscopic BCS theory in 1957 [1]. Landau earned a Nobel Prize for his theory of phase transitions, which was applied to many fields, including superconductivity. The BCS theory of superconductivity also earned its authors a Nobel Prize for their discovery.publishe

    Emerging magnetic order in platinum atomic contacts and chains

    No full text
    The development of atomic-scale structures revealing novel transport phenomena is a major goal of nanotechnology. Examples include chains of atoms that form while stretching a transition metal contact or the predicted formation of magnetic order in these chains, the existence of which is still debated. Here we report an experimental study of the magneto-conductance (MC) and anisotropic MC with atomic-size contacts and mono-atomic chains of the nonmagnetic metal platinum. We find a pronounced and diverse MC behaviour, the amplitude and functional dependence change when stretching the contact by subatomic distances. These findings can be interpreted as a signature of local magnetic order in the chain, which may be of particular importance for the application of atomic-sized contacts in spintronic devices of the smallest possible size

    Electron transport in magnetic quantum point contacts

    No full text
    In recent years, the fabrication of novel building blocks for quantum computation- and spintronics devices gained significant attention. The ultimate goal in terms of miniaturization is the creation of single-atom functional elements. Practically, quantum point contacts are frequently used as model systems to study the fundamental electronic transport properties of such mesoscopic systems. A quantum point contact is characterised by a narrow constriction coupling two larger electron reservoirs. In the absence of a magnetic field, the conductance of these quantum point contacts is quantised in multiples of 2e^2/h, the so-called conductance quantum (G_0). However, in the presence of magnetic fields the increased spin-degeneracy often gives rise to a deviation from the idealized behaviour and therefore leads to a change in the characteristic conductance of the quantum point contact. Herein, we illustrate the complex magnetotransport characteristics in quantum point contacts and magnetic heterojunctions. The theoretical framework and experimental concepts are discussed briefly together with the experimental results as well as potential applications

    Flux-periodicity crossover from h/2e to h/e in aluminium nano-loops

    No full text
    We study the magnetoresistance of aluminium 'double-networks' formed by connecting the vertexes of nano-loops with relatively long wires, creating two interlaced subnetworks of small and large loops (SL and LL, respectively). Far below the critical temperature, Aharonov-Bohm like quantum interference effects are observed for both the LL and the SL subnetworks. When approaching T c, both exhibit the usual Little-Parks oscillations, with periodicity of the superconducting flux quantum Ό 0 =h/2e. For one sample, with a relatively large coherence length, Ξ, at temperatures very close to T c, the Ό 0 periodicity of the SL disappears, and the waveform of the first period is consistent with that predicted recently for loops with a size a 0 periodicity.publishe
    corecore