112 research outputs found

    A cross-sectional study of child injury ambulance call-out characteristics and their utility in surveillance

    Get PDF
    Background: Injuries are a leading cause of death and ill-health in children. Aims: To explore the potential utility of ambulance call-out data in understanding the burden and characteristics of child injury. Methods: A cross-sectional examination was carried out of injury-related ambulance call-outs to children aged 0–14 years in the north west of England between April 2016 and March 2017. Findings: The majority of the 16 285 call-outs were for unintentional injuries (91.4%), with falls the most prevalent injury type (38.4%). The incidence of child injury ambulance call-outs peaked at age 1 year (233.4 per 10 000 population). Burns in children aged 5–9 years were significantly higher at weekends (P=0.003) and on celebration days (P=0.001); poisoning in 10–14 year-olds were significantly higher at weekends (P=0.001); and traffic injuries were significantly lower at weekends in 0–4 year-olds (P=0.009) and 10–14 year-olds (P=0.003). Conclusion: Ambulance call-out data can provide epidemiological support in examining the characteristics of child injury and identifying at-risk groups

    Progressive Visceral Leishmaniasis Is Driven by Dominant Parasite-induced STAT6 Activation and STAT6-dependent Host Arginase 1 Expression

    Get PDF
    The clinicopathological features of the hamster model of visceral leishmaniasis (VL) closely mimic active human disease. Studies in humans and hamsters indicate that the inability to control parasite replication in VL could be related to ineffective classical macrophage activation. Therefore, we hypothesized that the pathogenesis of VL might be driven by a program of alternative macrophage activation. Indeed, the infected hamster spleen showed low NOS2 but high arg1 enzyme activity and protein and mRNA expression (p<0.001) and increased polyamine synthesis (p<0.05). Increased arginase activity was also evident in macrophages isolated from the spleens of infected hamsters (p<0.05), and arg1 expression was induced by L. donovani in primary hamster peritoneal macrophages (p<0.001) and fibroblasts (p<0.01), and in a hamster fibroblast cell line (p<0.05), without synthesis of endogenous IL-4 or IL-13 or exposure to exogenous cytokines. miRNAi-mediated selective knockdown of hamster arginase 1 (arg1) in BHK cells led to increased generation of nitric oxide and reduced parasite burden (p<0.005). Since many of the genes involved in alternative macrophage activation are regulated by Signal Transducer and Activator of Transcription-6 (STAT6), and because the parasite-induced expression of arg1 occurred in the absence of exogenous IL-4, we considered the possibility that L. donovani was directly activating STAT6. Indeed, exposure of hamster fibroblasts or macrophages to L. donovani resulted in dose-dependent STAT6 activation, even without the addition of exogenous cytokines. Knockdown of hamster STAT6 in BHK cells with miRNAi resulted in reduced arg1 mRNA expression and enhanced control of parasite replication (p<0.0001). Collectively these data indicate that L. donovani infection induces macrophage STAT6 activation and STAT6-dependent arg1 expression, which do not require but are amplified by type 2 cytokines, and which contribute to impaired control of infection

    ANIMAL MODELS FOR THE STUDY OF LEISHMANIASIS IMMUNOLOGY

    Get PDF
    Leishmaniasis remains a major public health problem worldwide and is classified as Category I by the TDR/WHO, mainly due to the absence of control. Many experimental models like rodents, dogs and monkeys have been developed, each with specific features, in order to characterize the immune response to Leishmania species, but none reproduces the pathology observed in human disease. Conflicting data may arise in part because different parasite strains or species are being examined, different tissue targets (mice footpad, ear, or base of tail) are being infected, and different numbers (“low” 1×102 and “high” 1×106) of metacyclic promastigotes have been inoculated. Recently, new approaches have been proposed to provide more meaningful data regarding the host response and pathogenesis that parallels human disease. The use of sand fly saliva and low numbers of parasites in experimental infections has led to mimic natural transmission and find new molecules and immune mechanisms which should be considered when designing vaccines and control strategies. Moreover, the use of wild rodents as experimental models has been proposed as a good alternative for studying the host-pathogen relationships and for testing candidate vaccines. To date, using natural reservoirs to study Leishmania infection has been challenging because immunologic reagents for use in wild rodents are lacking. This review discusses the principal immunological findings against Leishmania infection in different animal models highlighting the importance of using experimental conditions similar to natural transmission and reservoir species as experimental models to study the immunopathology of the disease

    Kelps and environmental changes in Kongsfjorden: Stress perception and responses

    Get PDF
    corecore