9 research outputs found

    Sex-differences in the oxygenation levels of intercostales and vastus lateralis muscles during incremental exercise

    Get PDF
    This study aimed to examine sex differences in oxygen saturation in respiratory (SmO2-m.intercostales) and locomotor muscles (SmO2-m.vastus lateralis) while performing physical exercise. Twenty-five (12 women) healthy and physically active participants were evaluated during an incremental test with a cycle ergometer, while ventilatory variables (lung ventilation [V ̇E], tidal volume [Vt], and respiratory rate [RR]) were acquired through the breath-by-breath method. SmO2 was acquired using the MOXY devices on the m.intercostales and m.vastus lateralis. A two-way ANOVA (sex × time) indicated that women showed a greater significant decrease of SmO2-m.intercostales, and men showed a greater significant decrease of SmO2-m.vastus lateralis. Additionally, women reached a higher level of ΔSmO2-m.intercostales normalized to V ̇E (L·min-1) (p<0.001), whereas men had a higher level of ΔSmO2-m.vastus lateralis normalized to peak workload-to-weight (watts·kg-1, PtW) (p=0.049), as confirmed by Student's t-test. During an incremental physical exercise, women experienced a greater cost of breathing, reflected by greater deoxygenation of the respiratory muscles, whereas men had a higher peripheral load, indicated by greater deoxygenation of the locomotor muscles

    Eccentric Training in Pulmonary Rehabilitation of Post-COVID-19 Patients: An Alternative for Improving the Functional Capacity, Inflammation, and Oxidative Stress

    No full text
    The purpose of this narrative review is to highlight the oxidative stress induced in COVID-19 patients (SARS-CoV-2 infection), describe longstanding functional impairments, and provide the pathophysiologic rationale that supports aerobic eccentric (ECC) exercise as a novel alternative to conventional concentric (CONC) exercise for post-COVID-19 patients. Patients who recovered from moderate-to-severe COVID-19 respiratory distress demonstrate long&ndash;term functional impairment. During the acute phase, SARS-CoV-2 induces the generation of reactive oxygen species that can be amplified to a &ldquo;cytokine storm&rdquo;. The resultant inflammatory and oxidative stress process causes organ damage, particularly in the respiratory system, with the lungs as the tissues most susceptible to injury. The acute illness often requires a long-term hospital stay and consequent sarcopenia. Upon discharge, muscle weakness compounded by limited lung and cardiac function is often accompanied by dyspnea, myalgia, anxiety, depression, and sleep disturbance. Consequently, these patients could benefit from pulmonary rehabilitation (PR), with exercise as a critical intervention (including sessions of strength and endurance or aerobic exercises). Unfortunately, conventional CONC exercises induce significant cardiopulmonary stress and increase inflammatory and oxidative stress (OS) when performed at moderate/high intensity, which can exacerbate debilitating dyspnoea and muscle fatigue post-COVID-19. Eccentric training (ECC) is a well&ndash;tolerated alternative that improves muscle mass while mitigating cardiopulmonary stress in patients with COPD and other chronic diseases. Similar benefits could be realized in post-COVID-19 patients. Consequently, these patients could benefit from PR with exercise as a critical intervention

    Effectiveness of Respiratory Muscles Training by Voluntary Isocapnic Hyperpnea Versus Inspiratory Threshold Loading on Intercostales and Vastus Lateralis Muscles Deoxygenation Induced by Exercise in Physically Active Adults

    No full text
    Respiratory muscle training (RMT) improves physical performance, although it is still debated whether this effect depends on the type of training. The purpose of this study was to compare the effects of two different types of RMT, i.e., voluntary isocapnic hyperpnea (VIH) and inspiratory threshold loading (ITL), on the deoxygenation of intercostal (ΔSmO2-m. intercostales) and vastus lateralis (ΔSmO2-m. vastus lateralis) muscles during exercise. Twenty-four participants performed eight weeks of RMT by: (i) VIH (3 days·week−1 for 12 min at 60% maximal voluntary ventilation) or (ii) ITL (5 sets·week−1 of 30 breaths·minute−1 at 60% maximal inspiratory pressure). Cardiopulmonary exercise testing (CPET) included ΔSmO2 (the change from baseline to end of test) of intercostal and vastus lateralis muscles. After RMT, both groups showed decreased ΔSmO2-m. intercostales (VIH = 12.8 ± 14.6%, p = 0.04 (effect size, ES = 0.59), and ITL = 8.4 ± 9.8%, p = 0.04 (ES = 0.48)), without a coincident change of ∆SmO2-m. vastus lateralis. ITL training induced higher V˙O2-peak absolute values than VIH (mean Δ post–pre, ITL = 229 ± 254 mL·min−1 [95% CI 67–391] vs. VIH, 39 ± 153 mL·min−1 [95% CI −58–136.0], p = 0.01). In conclusion, both RMT improved the balance between supply and oxygen consumption levels of m. intercostales during CPET, with ITL also inducing an increase of aerobic capacity

    Monitoring Changes in Oxygen Muscle during Exercise with High-Flow Nasal Cannula Using Wearable NIRS Biosensors

    No full text
    Exercise increases the cost of breathing (COB) due to increased lung ventilation (V˙E), inducing respiratory muscles deoxygenation (∇SmO2), while the increase in workload implies ∇SmO2 in locomotor muscles. This phenomenon has been proposed as a leading cause of exercise intolerance, especially in clinical contexts. The use of high-flow nasal cannula (HFNC) during exercise routines in rehabilitation programs has gained significant interest because it is proposed as a therapeutic intervention for reducing symptoms associated with exercise intolerance, such as fatigue and dyspnea, assuming that HFNC could reduce exercise-induced ∇SmO2. SmO2 can be detected using optical wearable devices provided by near-infrared spectroscopy (NIRS) technology, which measures the changes in the amount of oxygen bound to chromophores (e.g., hemoglobin, myoglobin, cytochrome oxidase) at the target tissue level. We tested in a study with a cross-over design whether the muscular desaturation of m.vastus lateralis and m.intercostales during a high-intensity constant-load exercise can be reduced when it was supported with HFNC in non-physically active adults. Eighteen participants (nine women; age: 22 ± 2 years, weight: 65.1 ± 11.2 kg, height: 173.0 ± 5.8 cm, BMI: 21.6 ± 2.8 kg·m−2) were evaluated in a cycle ergometer (15 min, 70% maximum watts achieved in ergospirometry (V˙O2-peak)) breathing spontaneously (control, CTRL) or with HFNC support (HFNC; 50 L·min−1, fiO2: 21%, 30 °C), separated by seven days in randomized order. Two-way ANOVA tests analyzed the ∇SmO2 (m.intercostales and m.vastus lateralis), and changes in V˙E and ∇SmO2·V˙E−1. Dyspnea, leg fatigue, and effort level (RPE) were compared between trials by the Wilcoxon matched-paired signed rank test. We found that the interaction of factors (trial × exercise-time) was significant in ∇SmO2-m.intercostales, V˙E, and (∇SmO2-m.intercostales)/V˙E (p ∇SmO2-m.vastus lateralis. ∇SmO2-m.intercostales was more pronounced in CTRL during exercise since 5′ (p p ∇SmO2·V˙E−1 decreased during exercise, being lowest in CTRL since 5′. Lower dyspnea was reported in HFNC, with no differences in leg fatigue and RPE. We concluded that wearable optical biosensors documented the beneficial effect of HFNC in COB due to lower respiratory ∇SmO2 induced by exercise. We suggest incorporating NIRS devices in rehabilitation programs to monitor physiological changes that can support the clinical impact of the therapeutic intervention implemented

    SUMO 2017 Towards Simulation for Autonomous Mobility

    Get PDF
    This volume contains the proceedings of the SUMO Conference 2017 which was held from 8th to 10th May 2017 with a focus on autonomous mobility. In the current transition process traffic simulation is the only tool which can give us insights in the mechanisms of traffic in largely automatized traffic scenarios. SUMO as an open source tool provides a wide range of traffic planning and simulation functionalities to support the scientific community. The conference proceedings offer an overview of the applicability of the SUMO tool suite as well as its universal extensibility due to the availability of the source code. The major topic of this fifth edition of the SUMO conference is the calibration of simulation to real world or handbook data as well as communicating networks of intelligent vehicles. A number of contributions cover heterogeneous traffic networks, junction control and new traffic model extensions to the simulation. Subsequent specialized issues such as emission modelling and personal rapid transit simulation are targeted as well. At the conference the international user community exchanged their experiences in using SUMO. With this volume we provide an insight to these experiences as inspiration for further projects with the SUMO suite

    NEOTROPICAL CARNIVORES: a data set on carnivore distribution in the Neotropics

    No full text
    Mammalian carnivores are considered a key group in maintaining ecological health and can indicate potential ecological integrity in landscapes where they occur. Carnivores also hold high conservation value and their habitat requirements can guide management and conservation plans. The order Carnivora has 84 species from 8 families in the Neotropical region: Canidae; Felidae; Mephitidae; Mustelidae; Otariidae; Phocidae; Procyonidae; and Ursidae. Herein, we include published and unpublished data on native terrestrial Neotropical carnivores (Canidae; Felidae; Mephitidae; Mustelidae; Procyonidae; and Ursidae). NEOTROPICAL CARNIVORES is a publicly available data set that includes 99,605 data entries from 35,511 unique georeferenced coordinates. Detection/non-detection and quantitative data were obtained from 1818 to 2018 by researchers, governmental agencies, non-governmental organizations, and private consultants. Data were collected using several methods including camera trapping, museum collections, roadkill, line transect, and opportunistic records. Literature (peer-reviewed and grey literature) from Portuguese, Spanish and English were incorporated in this compilation. Most of the data set consists of detection data entries (n = 79,343; 79.7%) but also includes non-detection data (n = 20,262; 20.3%). Of those, 43.3% also include count data (n = 43,151). The information available in NEOTROPICAL CARNIVORES will contribute to macroecological, ecological, and conservation questions in multiple spatio-temporal perspectives. As carnivores play key roles in trophic interactions, a better understanding of their distribution and habitat requirements are essential to establish conservation management plans and safeguard the future ecological health of Neotropical ecosystems. Our data paper, combined with other large-scale data sets, has great potential to clarify species distribution and related ecological processes within the Neotropics. There are no copyright restrictions and no restriction for using data from this data paper, as long as the data paper is cited as the source of the information used. We also request that users inform us of how they intend to use the data

    NEOTROPICAL ALIEN MAMMALS: a data set of occurrence and abundance of alien mammals in the Neotropics

    No full text
    Biological invasion is one of the main threats to native biodiversity. For a species to become invasive, it must be voluntarily or involuntarily introduced by humans into a nonnative habitat. Mammals were among first taxa to be introduced worldwide for game, meat, and labor, yet the number of species introduced in the Neotropics remains unknown. In this data set, we make available occurrence and abundance data on mammal species that (1) transposed a geographical barrier and (2) were voluntarily or involuntarily introduced by humans into the Neotropics. Our data set is composed of 73,738 historical and current georeferenced records on alien mammal species of which around 96% correspond to occurrence data on 77 species belonging to eight orders and 26 families. Data cover 26 continental countries in the Neotropics, ranging from Mexico and its frontier regions (southern Florida and coastal-central Florida in the southeast United States) to Argentina, Paraguay, Chile, and Uruguay, and the 13 countries of Caribbean islands. Our data set also includes neotropical species (e.g., Callithrix sp., Myocastor coypus, Nasua nasua) considered alien in particular areas of Neotropics. The most numerous species in terms of records are from Bos sp. (n = 37,782), Sus scrofa (n = 6,730), and Canis familiaris (n = 10,084); 17 species were represented by only one record (e.g., Syncerus caffer, Cervus timorensis, Cervus unicolor, Canis latrans). Primates have the highest number of species in the data set (n = 20 species), partly because of uncertainties regarding taxonomic identification of the genera Callithrix, which includes the species Callithrix aurita, Callithrix flaviceps, Callithrix geoffroyi, Callithrix jacchus, Callithrix kuhlii, Callithrix penicillata, and their hybrids. This unique data set will be a valuable source of information on invasion risk assessments, biodiversity redistribution and conservation-related research. There are no copyright restrictions. Please cite this data paper when using the data in publications. We also request that researchers and teachers inform us on how they are using the data
    corecore