8 research outputs found

    Effect of chloride passivation on recombination dynamics in CdTe colloidal quantum dots

    Get PDF
    Colloidal quantum dots (CQDs) can be used in conjunction with organic charge‐transporting layers to produce light‐emitting diodes, solar cells and other devices. The efficacy of CQDs in these applications is reduced by the non‐radiative recombination associated with surface traps. Here we investigate the effect on the recombination dynamics in CdTe CQDs of the passivation of these surface traps by chloride ions. Radiative recombination dominates in these passivated CQDs, with the radiative lifetime scaling linearly with CQD volume over τr=20–55 ns. Before chloride passivation or after exposure to air, two non‐radiative components are also observed in the recombination transients, with sample‐dependent lifetimes typically of less than 1 ns and a few ns. The non‐radiative dynamics can be explained by Auger‐mediated trapping of holes and the lifetimes of this process calculated by an atomistic model are in agreement with experimental values if assuming surface oxidation of the CQDs

    Near-unity quantum yields from chloride treated CdTe colloidal quantum dots

    Get PDF
    Colloidal quantum dots (CQDs) are promising materials for novel light sources and solar energy conversion. However, trap states associated with the CQD surface can produce non‐radiative charge recombination that significantly reduces device performance. Here a facile post‐synthetic treatment of CdTe CQDs is demonstrated that uses chloride ions to achieve near‐complete suppression of surface trapping, resulting in an increase of photoluminescence (PL) quantum yield (QY) from ca. 5% to up to 97.2 ± 2.5%. The effect of the treatment is characterised by absorption and PL spectroscopy, PL decay, scanning transmission electron microscopy, X‐ray diffraction and X‐ray photoelectron spectroscopy. This process also dramatically improves the air‐stability of the CQDs: before treatment the PL is largely quenched after 1 hour of air‐exposure, whilst the treated samples showed a PL QY of nearly 50% after more than 12 hours

    Influence of elevated radiative lifetime on efficiency of CdSe/CdTe Type II colloidal quantum dot based solar cells

    Get PDF
    Colloidal quantum dots (CQDs) are promising materials for solar cells because their optoelectronic properties are easily adjusted by control of their size, structure and composition. We present calculations of the band gap and radiative lifetime for varying core diameter and shell thickness of CdSe/CdTe core/shell Type II CQDs using a combination of single particle (2,6)-band k·pk·p and many-electron configuration interaction (CI) Hamiltonians. These calculations are validated by comparison with experimental absorption spectra and photoluminescence decay data. The results are then incorporated into a model of photovoltaic efficiency which demonstrates how the overall performance of a solar cell based on Type II CQDs is affected by changes in the core/shell geometry. The largest effect on photovoltaic efficiency is found to be due to the longer radiative lifetime produced by increasing the shell thickness

    CdSe and CdSe/CdTe core/shell CQD lifetimes Data

    No full text
    Calculated lifetimes and fit parameters extracted from transient PL decay of CdSe and CdSe/CdTe colloidal quantum dots samples

    Near-Unity Quantum Yields from Chloride Treated CdTe Colloidal Quantum Dots

    No full text
    Colloidal quantum dots (CQDs) are promising materials for novel light sources and solar energy conversion. However, trap states associated with the CQD surface can produce non-radiative charge recombination that significantly reduces device performance. Here a facile post-synthetic treatment of CdTe CQDs is demonstrated that uses chloride ions to achieve near-complete suppression of surface trapping, resulting in an increase of photoluminescence (PL) quantum yield (QY) from ca. 5% to up to 97.2 ± 2.5%. The effect of the treatment is characterised by absorption and PL spectroscopy, PL decay, scanning transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. This process also dramatically improves the air-stability of the CQDs: before treatment the PL is largely quenched after 1 hour of air-exposure, whilst the treated samples showed a PL QY of nearly 50% after more than 12 hours
    corecore